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Over the last few decades, dramatic land-use changes have occurred throughout Israel. Previously-grazed
areas have been afforested, converted to irrigated or rain-fed agriculture, turned into natural reserves,
often used as large military training sites, converted to rural and urban settlements, or left unused. Land-
use maps provided by the Israeli governmental are more detailed for agricultural and urban land-use
classes than for others. While rangelands still account for a substantial part of the northern Negev, their
extent today is not well defined. In light of continuous land-use changes and lack of regard to rangelands
in existing land-use maps, there is a need for creating a current land-use information database, to be
utilized by planners, scientists, and decision makers. Remote-sensing (RS) data are a viable source of data
from which land-use maps could be created and updated efficiently. The purpose of this work is to
explore low-cost techniques for combining current satellite RS data together with data from the Israeli
Geographic Information System (GIS) in order to create a relatively accurate and current land-use map
for the northern Negev. Several established methods for land-use classification from RS data were
compared. In addition, ancillary land-use data were used to update and improve the RS classification
accuracy within a GIS framework. It was found that using a combination of supervised and unsupervised
training classes produces a more accurate product than when using either of them separately. It was also
found that updating this product using ancillary data and GIS techniques can improve the product
accuracy by up to 10%. The final product’s overall accuracy was 81%. It is suggested that applying the
presented technique for more RS images taken at different times can facilitate the creation of a database
for land-use changes.

© 2010 Elsevier Ltd. All rights reserved.

Introduction

The observed biophysical cover of the earth’s surface, termed
land-cover, is composed of patterns that occur due to a variety of
natural and human-derived processes. Land-use, on the other hand,
is human activity on the land, influenced by economic, cultural,
political, historical, and land-tenure factors. Remotely-sensed data
(i.e., satellite or aerial imagery) can often be used to define land-use
through observations of the land-cover (Brown, Pijanowski, & Duh,
2000; Karl & Maurer, 2010). Up-to-date land-use information is of
critical importance to planners, scientists, resource managers, and
decision makers.

One way to extract land-use information from remote-sensing
data is through visual interpretation. However, visual interpretation
is limited to a single band or a three-band (RGB) color composite.
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Manual digitization of land-use patches is extremely tedious as well
as subjective (Bolstad, Gessler, & Lillesand, 1990). Therefore, auto-
matic classification of remote sensing is more suitable for mapping
land-use in a large area. While land-use and land-cover patterns may
be obvious to an image interpreter, automatically mapping them
could be difficult because automated classification techniques do not
possess the superior pattern recognition capabilities of the human
brain (Hudak & Brockett, 2004). When automatically classifying
a complex landscape from remote-sensing imagery, it is challenging
to achieve an accurate classification (Manandhar, Odeh, & Ancev,
2009). It has been claimed before that the eastern Mediterranean
landscapes are considered the most heterogeneous of all (Alrababah
& Alhamad, 2006). Therefore, classifying the landscape in this region
is not a trivial task.

Nevertheless, previous studies show that Landsat Thematic
Mapper (TM) images with the spatial resolution of 30 m are suffi-
cient to accurately classify a large variety of landscapes from the
homogeneous tropical landscapes to the heterogeneous Mediterra-
nean landscapes (Alrababah & Alhamad, 2006; Koutsias & Karteris,
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2003; Manandhar et al., 2009; Sader, Ahl, & Liou, 1995; Schulz,
Cayuela, Echeverria, Salas, & Rey Benayas, 2010). Landsat has been
providing a nearly continuous record of global land surface change
since 1972 (Cohen & Goward, 2004). Currently, two Landsat sensors
in orbit are operational: TM on board Landsat-5 and Enhanced
Thematic Mapper Plus (ETM+) on board Landsat-7. Both sensors
acquire measurements in all major portions of the solar electro-
magnetic spectrum (visible, near-infrared, and shortwave-infrared),
providing significant advantage over less capable sensor systems.
However, Landsat-7, launched in 1999, developed a problem with
the scan-line corrector in 2003, leading to reduced data quality for
land-use mapping applications (Powell, Pflugmacher, Kirschbaum,
Kim, & Cohen, 2007). Today, Landsat-5, launched in 1984, has far
exceeded its 3-year life expectancy but continues to provide quality
data products, although it was expected to run out of fuel by late
2010 (Wulder et al., 2008). Landsat data are widely applied for land-
use classification on a regional scale due to their relatively lower
cost, longer history, and higher frequency of archives in comparison
to other remote-sensing data sources.

It has been previously determined that satellite image classifica-
tion results did not improve over a period of 15 years in spite of
vigorous and creative efforts to establish new classification algo-
rithms during this period (Wilkinson, 2005). Therefore, it was
concluded there islittle value in continued research efforts toimprove
classification algorithms in remote sensing (Manandhar et al., 2009).
Recently, the trend amongst researchers has been to let geographical
data “have a stronger voice” rather than let statistically-derived
parameters dictate the analysis. Integration of remotely-sensed data
with other sources of georeferenced information, such as previous
land-use data, spatial texture, and digital elevation models (along
with their derivatives: slope, aspect, etc.), geology, soils, hydrology,
transportation network, vegetation, and climate enable greater clas-
sification accuracy to be achieved (Lillesand & Kiefer, 2000;
Manandhar et al,, 2009; Stefanov, Ramsey, & Christensen, 2001;
Tateishi & Shalaby, 2007). The particular sources of data used and
how and when they are employed in a given application are normally
determined through a set of decision rules formulated by the image
analyst. The integration of several data sources in a Geographic
Information System (GIS) allows the analyst to develop a series of
post-classification decision rules utilizing all the data sources in
combination (Lillesand & Kiefer, 2000). The integration of remote-
sensing data, GIS and “expert system” techniques to form Decision
Support Systems (DSS) can provide better classification accuracies
than any of the individual data sources used alone.

The purpose of this work was to explore low-cost techniques for
land-use mapping. Landsat TM imagery was classified by two
widely used and established classification approaches, and these
two methods were combined and compared. Next, the hypothesis
that integrating current satellite remote-sensing data together with
data from the Israeli GIS will improve the land-use mapping
significantly was tested. The land-use classification technique
presented in this work can be used to produce information per-
taining changes in land-uses, such as monitoring of land-use
conversion and land degradation. The information could be further
used to study the relations between land-use changes and other
phenomena such as carbon fixation, biodiversity, climate change,
and sustainable management of natural resources.

Specific objectives of the current study are:

1. To compare between supervised and unsupervised land-use
classification techniques;

2. To examine whether combining signatures from both super-
vised and unsupervised training data (hybrid classification)
provides significantly more accurate results then each
approach separately;

3. To examine whether using a decision support system for
updating the map based on expert knowledge and ancillary GIS
data improves the classification accuracy significantly.

Study area

Located in the northern Negev, on the desert fringe, the study
area (Fig. 1) is about 4000 km? in size. The study area’s borders are
delimited by Ramat-Hovav in the south, Yatir forest in the east,
Kiryat-Gat and Ashkelon in the North, and the Mediterranean Sea,
Gaza and Sinai in the west. This area is particularly diverse since it
lies on the transition zone between arid, semi-arid, and Mediter-
ranean climate zones. Average annual precipitation decreases along
two climate gradients from north to south and from west to east;
from more than 450 mm/year in the north-eastern part to less than
150 mm/year in the arid parts of the Negev (southern part of the
study area). Examples for several distinct geomorphologic struc-
tures can be found in this area, including flood and alluvial plains,
calcareous crust, crescentic dunes, and sand fields, with diverse
parent rocks. As a result, there are many soil types including skel-
etal soils on unconsolidated materials (regosols), coarse desert
alluvium, sand dunes, loess with hard pan (loessial sierozem), rocky
desert soils (lithosols), rendzinas and terrarosa. This diversity of the
environment results in diverse communities of flora and fauna.

During the last few decades, considerable land-use changes have
occurred in Israel (Orenstein & Hamburg, 2009). Historically most of
the northern Negev was Bedouin grazing territory. The geographical
distribution of accessible rangeland in the Negev changed due to
afforestation programs of the Jewish National Fund (JNF) and
concentration of population in townships, along roads, and along
water lines. As a result, the available rangeland areas and stocking
rates in the Negev have fluctuated. Previously-grazed areas have
been afforested, converted to irrigated or rain-fed agriculture,
turned into natural reserves, often used as large military reserves,
converted to rural and urban settlements, or left unused. During this
period, the Negev pastoralists, nearly all of them Bedouin (of several
tribes), have been affected by social, economic, policy and political
factors that have brought about changes in demography, lifestyle,
livelihoods, and dependence on livestock.

While rangelands still account for a substantial part of the
northern Negev, their extent today is not well defined. Land-use
maps provided by the Israeli government are more detailed for
agricultural and urban land-use classes, than for others. Currently,
there are only two national land-use maps available from the state
of Israel: one from the Israeli Central Bureau of Statistics (CBS) and
another from the Survey of Israel. Both maps lack a definition of
rangelands. In addition, the Ministry of Agriculture does not
possess any rangeland maps of the northern Negev, where land
devoted for pasture is not defined by fences (Shmuel Friedman,
Director of Open Spaces, Ministry of Agriculture, personal
communication). In light of continuous land-use changes and lack
of regard to rangelands in existing land-use maps, there is a need
for creating a current land-use information database, to be utilized
by planners, scientists, and decision makers.

Methodology

Initially, a Landat-5 TM image of the northern Negev was pre-
processed and then classified in several ways using ERDAS
IMAGINE 2010. Post-classification, a decision support system based
on expert knowledge was used to update the classification products
according to existing land-use databases using ArcGIS 9.3. The
accuracy of each of the derived classification products was assessed
in several ways, after which different product accuracies were
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Fig. 1. (A) The research area over the Israeli Negev desert fringe (imposed over a false-color composite of Landsat-5 TM (RGB = 4,3,2)). Note the sharp contrast across the climatic
transition zone between the arid and semi-arid zones; (B) Blowup of the study area; (C) Schematic map of the research area, Israel borders, and the Landsat image footprint.

compared using statistical means with STATISTICA 9.0. Fig. 2
presents a flowchart of the work.

Image pre-processing

The primary source for land-use classification is a Landsat-5 TM
image (Path 174, Row 38) acquired on 30-Jan-2009. The selected
area appears cloud free. Only the reflective bands (1-5 and 7) of the
sensor were used in this study. Pre-processing of the image
included one-step radiometric and atmospheric corrections using
the dark-object subtraction method (Chavez, 1996; Song,
Woodcock, Seto, Lenney, & Macomber, 2001) and the latest radio-
metric calibration coefficients published (Chander, Markham, &
Helder, 2009).

To facilitate incorporation of ancillary data, the radiometrically
and atmospherically corrected image was then geo-registered to an
up-to-date orthophoto of Israel (Survey of Israel, 2009) using
ERDAS AUTOSYNC feature; the Automatic Point Measurement
(APM) software was used to generate 1095 Ground Control Points
(GCPs) automatically and 40 manually generated GCPs were added
in order to assure GCP distribution throughout the entire research
area. Afterwards, the satellite image was resampled and projected
to the Israeli Transverse-Mercator coordinate system with pixel size
of 30 m using nearest-neighbor resampling and second order
polynomial transformation equations. The total Root-Mean-Square
Error (RMSE) achieved was 0.35 pixels, which is well under the
conventional requirements of less than 1 pixel (Coppin, Jonckheere,
Nackaerts, Muys, & Lambin, 2004; Huang et al., 2009; Mas, 1999)
and even less than strict requirements of 0.5 pixels (Elvidge & Yuan,
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Fig. 2. Research flowchart.

1998; Kennedy, Cohen, & Schroeder, 2007). The successful geo-
registration allows comparison to the national orthophoto and to
additional maps.

Classification

For this study, Level 1 of the Anderson classification system was
used (Anderson, Hardy, Roach, & Witmer, 1976). This classification
system is designed to mainly rely on remote sensing; therefore only
land-use and land-cover types identifiable by remote sensing are
used as the basis for organizing this classification. Level 1 of the
Anderson classification system is recommended for use with
Landsat resolution data. Although this classification scheme is
coarse, it eliminates misclassification errors and makes delineation
of categories more substantial (Mallinis, Emmanoloudis,
Giannakopoulos, Maris, & Koutsias, 2011; Zomeni, Tzanopoulos, &
Pantis, 2008). The different land-uses and land-covers included in
the six classes used by this study are detailed in Table 1.

ISODATA unsupervised classification

The pre-processed reflective bands image was classified into 80
classes using ISODATA classification technique. Following classifi-
cation, each of the 80 classes was assigned into one of the six land-
use classes by masking each class and projecting it on the up-to-date
orthophoto of Israel for visual interpretation. Finally, the image was
recoded according to the six land-use classes.

Maximum likelihood supervised classification

The image was classified using signatures from training sites
that include all the land-cover types detailed in Table 1. A total of
120 signatures were collected from all land-use and land-cover

classes. The signatures were collected by digitizing polygons on the
up-to-date, high-resolution orthophoto of Israel, and then projec-
ting them onto the image to collect the training samples. This
allows for greater accuracy then simply digitizing from the Landsat
TM image itself. When collection of training sites was done, the
Euclidean distance between their spectral signatures served as
a measure of separability for the signatures collected for each land-
use class; spectrally similar signatures of the same class were
united. The maximum likelihood classification (MLC) was run with
a feature-space non-parametric decision rule. Classes of the
resulting image were recoded into the six land-use classes.

Hybrid classification

An iterative classification approach was used, whereby spectral
signatures for specific land-use and land-cover classes were cre-
ated using unsupervised training followed by supervised training
(Bakr, Weindorf, Bahnassy, Marei, & El-Badawi, 2010). After

Table 1
Land-use classification system for use with Landsat data (After Anderson et al.,
1976).

Land-use class Land-uses and land-covers included in class

1 Urban or built-up Structures of all types: residential, industrial,

land agricultural commercial and cervices.
Transportation and utilities. Mixed urban
or built-up land.
Cropland, orchards, vineyards, and nurseries.
Herbaceous, shrub and brush, and mixed rangeland.
Deciduous, evergreen, and mixed forests.
Reservoirs, coastal water.
Bare exposed rock, quarries and disturbed
ground at building sites, and dirt roads.

2 Agricultural fields
3 Rangeland

4 Forest

5 Water bodies

6 Barren land
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evaluating the classification product accuracies, signatures that
contributed to the most accurate class assignments from both
supervised and unsupervised training were appended together.
MLC was applied again with the improved signature set.

Post-classification processing

While governmental land-use maps have their flaws, some
relevant information could be extracted from them in order to
improve the remote-sensing based classification. Created in 2004,
the CBS map has been based on data from 2002. Although delin-
eation of built-up terrain (housing and agricultural buildings) in the
Bedouin diaspora of the Negev was added in 2007, this map is not
updated for recent changes in land-use. While the CBS map is very
detailed for urban and built-up land-uses and moderately detailed
for agricultural land-uses, it does not account for areas used for
pasture. These rangelands are categorized under “other open
grounds” together with everything that does not fit into one of the
other land-use classes of the CBS map. The Survey of Israel map is
much more expensive and thus, only parts were available for use.
Moreover, those parts were updated for 2004. Morphological cover
features and orchards are mapped to a great detail but areas used
for pasture are not defined. Also, some, but not all urban land-uses
are defined. Most built-up areas are included in the “area without
known characteristics” class together with other land-cover classes
that do not fitin any class. Since both maps are relatively up-to-date
and contain some useful information for land-use classification,
they were combined to enhance the remote-sensing based classi-
fication efforts.

Land-use polygon layers were clipped according to the research
area boundaries and converted to ERDAS raster format using
ARCGIS. The data was resampled to 30 m resolution to match the
Landsat TM data. Each of the land-use and land-cover classes of the
original maps was recoded into the most fitting of the six land-use
classes (Fig. 3). No classes were recoded into the “Water” and
“Barren land” classes.

A Decision Support System (DSS) was designed (Fig. 4) based on
a set of logical land-use trends, and the “convergence of evidence”
approach (Sader et al., 1995) whereby a pixel’s value is updated only
if an indicator exists in all data layers. It was decided not to update
water and barren land pixels since the land-use maps do not
account for them. To clear up some of the “salt & pepper” noise

Fig. 4. Flowchart for the post-classification accuracy improvements by noise filtering
and incorporation of ancillary land-use data using a Decision Support System (DSS).

12 Agricuture [l 4

B 1 Uan/Buit-up [l 3 Rangeland [ |5 Water

Forest [ 16 Barrenland

Fig. 3. Land-use maps assigned to Level 1 of the Anderson classification system (Anderson et al., 1976): (A) Central Bureau of Statistics (2004); (B) Survey of Israel (2004). The legend

applies to all maps in this work.
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apparent in the remote-sensing based classification products,
a majority filter was employed for all of them. Following the
majority filter, the three steps outlined below were executed in the
order described for all the products:

e Since there is mainly afforestation and little or no deforestation
in Israel, it was assumed that a pixel classified as forest in both
land-use maps, should be classified as forest in the final clas-
sification product. However, since the forest areas in the maps
represent JNF development areas, which are actually not all
forests, additional information about forest planting was inte-
grated into the decision making process. Thus, information
layers containing older planted forests and trees planted on
stream banks were used to confirm the afforestation in the JNF
development areas.

e In a similar fashion, agricultural land could theoretically be
transformed into built-up land, but rarely would it be aban-
doned to become a forest or rangeland. Most classification
accuracy assessments showed only few pixels misclassified as
built-up land instead of agricultural fields. Also, it was assumed
that not a great deal of land has undergone the transition from
agricultural to built-up in the five-year gap between the
productions of the land-use maps and the acquisition of the
satellite image. Due to all these assumptions, it was decided
a pixel classified as agricultural land in both maps should be
classified as so in the final classification product.

e As for built-up land, since the Survey of Israel map is not very
accurate for that class it was decided not to update this class from
the two land-use maps. However, after being paved, main roads
are usually not converted to any other land-uses. Therefore, they
were extracted from a GIS layer containing all the roads in Israel
and overlaid on top of the final classification product.

Classification accuracy assessment

Throughout the classification process, the accuracy of classifi-
cation maps was assessed by a set of 600 points sampled using the
stratified random sampling; 100 points were randomly selected for
each of the classes in the first generated classification map of this
research (the ISODATA classification). These validation points were
projected on to the up-to-date orthophoto of Israel, visually inter-
preted and each point was assigned to one of the land-use classes
defined in Table 1. When using a coarse classification scheme such
as the Anderson Level 1 classification, the analyst’s interpretation
based on a detailed orthophoto (1m spatial resolution) is not only
as accurate as collecting ground truth data, but also faster and more
efficient. The same validation set was further used for all the
generated classification products to help ensure that the differ-
ences in accuracy could be attributed to the nature of class alloca-
tion and not the selected validation set (Foody, 2004). For each
map, a confusion matrix was created and accuracy measures were
calculated. The use of measures such as overall accuracy, Kappa
statistics, producer’s accuracy, user’s accuracy and the conditional
Kappa, are quite common and explained in detail in numerous
publications (e.g. Campbell, 1996; Congalton, 1991; Foody, 2002;
Lillesand & Kiefer, 2000; Rosenfield & Fitzpatrick-Lins, 1986).

Thematic maps accuracy comparison

When comparing classification methods, to decide which one is
better, a researcher can simply choose the classifier yielding
a better accuracy as measured by the overall accuracy, or the Kappa
statistic (Cingolani, Renison, Zak, & Cabido, 2004). However, not
every difference is significant and therefore, statistical significance

tests are required. Comparison of Kappa coefficients using a Z-test
is perhaps the method most advocated for thematic maps accuracy
comparison (Congalton, 1991; Congalton, Oderwald, & Mead, 1983;
Elmahboub, Scarpace, & Smith, 2009; Foody, 2002, 2004;
Rosenfield & Fitzpatrick-Lins, 1986; Sader et al., 1995). Having
used the same validation set for all the classification products, one
cannot assume the samples used to derive each Kappa coefficient
are independent and therefore the parametric test for comparing
Kappa coefficients is inappropriate (Foody, 2004). If a Z-test was
performed, it may result in overly large variance estimates and too
conservative inference about the difference in accuracy between
the two methods (De Leeuw et al., 2006).

An alternative approach for comparison of related samples has
emerged in recent years; instead of comparing Kappa coefficients,
the statistical significance of the difference between two propor-
tions may be evaluated using McNemar’s test (De Leeuw et al.,
2006; Foody, 2004). This is a non-parametric test that is based on
a binary distinction between correct and incorrect class allocations
(Table 2). The McNemar test is based upon the standardized normal
test statistic in equation (1).

(1)

Since the square of z follows a Chi-squared distribution with one
degree of freedom (Foody, 2004), the test equation could be
expressed as equation (2):

2 (b—0?
= "bic 2
While x2 distribution is continuous, the distribution of sample
frequencies in tests based on z is discrete (Dietterich, 1998).
Therefore, a continuity correction is recommended. It is particularly
important if the sample size used is small, but its impact diminishes
for large sample sizes (Foody, 2004).
Equation (3) incorporates such a continuity correction:

(b —1)?
X = b+c (3)

Results
Reflective band classification

The accuracies of both the supervised and unsupervised classi-
fication of the reflective bands were assessed. Confusion matrixes
and accuracy measures can be found in Tables 3 and 4. Judging by
the overall accuracy and overall Kappa statistics, it is apparent that
the unsupervised classification is superior to the supervised clas-
sification (overall accuracy of 70.67% vs. 60.83%, respectively, Kappa
statistic of 0.65 vs. 0.53, respectively). A McNemer’s test confirmed
that the unsupervised classification was significantly better in
comparison to the supervised classification (x* = 19.67, p < 0.0001).
However, when looking at specific class accuracy measures, such as
the conditional Kappa, a different reality unfolds; for most classes,
the supervised classification accuracies are better or similar to the

Table 2
Cross tabulation of number of correct and wrongly classified pixels for two alter-
native classifiers; the definition of matrix elements used in equations (1)—(3).

Classification 1

Classification 2 Correct Incorrect
Correct a b
Incorrect c d
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Table 3 Table 5
Confusion matrix and accuracy measures for ISODATA unsupervised classification. Confusion matrix and accuracy measures for hybrid MLC.
Class Reference data Sum Class Reference data Sum
1 2 3 4 5 6 1 2 3 4 5 6
Classified data 1 61 20 19 0 0 0 100 Classified data 1 67 49 28 4 5 0 153
2 7 55 35 3 0 0 100 2 1 35 7 5 0 0 48
3 2 15 83 0 0 0 100 3 3 23 129 3 1 0 159
4 1 25 36 38 0 0 100 4 0 12 13 29 0 0 54
5 0 4 4 2 90 0 100 5 0 0 0 2 84 0 86
6 0 0 3 0 0 97 100 6 0 0 3 0 0 97 100
Sum 71 119 180 43 90 97 600 Sum 71 119 180 43 90 97 600

Producer’s accuracy User’s accuracy Conditional Kappa

Producer’s accuracy User’s accuracy Conditional Kappa

85.92% 61.00% 0.56
46.22% 55.00% 0.44
46.11% 83.00% 0.76
88.37% 38.00% 0.33
100.00% 90.00% 0.88
100.00% 97.00% 0.96

94.37% 43.79% 0.36
29.41% 72.92% 0.66
71.67% 81.13% 0.73
67.44% 53.70% 0.50
93.33% 97.67% 0.97
100.00% 97.00% 0.96

The bold parts are used for the computation of the overall accuracy measure.
Overall Classification Accuracy = 70.67%.
Overall Kappa Statistics = 0.65.

unsupervised accuracies. When closely observing the first class
(Urban or Built-up Land), it is apparent that it exhibits a very low
user’s accuracy and conditional Kappa for the supervised classifi-
cation, and much higher values for the unsupervised classification.

Following this notion, the hybrid classification used the signa-
tures that were generated by the ISODATA classification as the
training set for the first class instead of the training signatures
obtained in a supervised manner from digitizing areas of interest
around settlements. The error matrix and accuracy measures for
this hybrid classification are presented in Table 5. While the hybrid
MLC results seem synergetic in a sense that both the overall
accuracy and the overall Kappa statistics were improved, the
McNemer'’s test confirmed that the accuracy improvement by the
hybrid classification was statistically significant in comparison to
the supervised classification (x*> = 42.15, p < 0.0001), but not
significant in comparison to the unsupervised classification
(x* = 1.43, not significant (NS)).

GIS decision support system (DSS)

Each of the filtered remote-sensing based classification products
has undergone improvement using a DSS. “Before” and “After”

Table 4

Confusion matrix and accuracy measures for supervised MLC.
Class Reference data Sum

1 2 3 4 5 6
Classified data 1 70 81 81 11 13 3 259

2 0 27 7 3 0 0 37
3 1 5 86 13 0 2 107
4 0 6 2 13 0 0 21
5 0 0 1 3 77 0 81
6 0 0 3 0 0 92 95
Sum 71 119 180 43 90 97 600

Producer’s accuracy User’s accuracy Conditional Kappa

98.59% 27.03% 0.17
22.69% 72.97% 0.66
47.78% 80.37% 0.72
30.23% 61.90% 0.59
85.56% 95.06% 0.94
94.85% 96.84% 0.96

The bold parts are used for the computation of the overall accuracy measure.
Overall Classification Accuracy = 60.83%.
Overall Kappa Statistics = 0.53.

The bold parts are used for the computation of the overall accuracy measure.
Overall Classification Accuracy = 73.50%.
Overall Kappa Statistics = 0.68.

products are presented in Fig. 5. Confusion matrices and additional
accuracy measures are presented in Tables 6—8. It was found that
the DSS improved all the classification products by up to 10%. This
improvement was found to be statistically significant (o« = 0.01) in
every case (Table 9). The most accurate classification product was
produced from reflective bands using the hybrid classification and
the DSS improvement (81% overall accuracy, Kappa = 0.7681).
When comparing its accuracy to those of the rest of the classifi-
cation products, it was found to be significantly different from all of
them (Table 10).

Fig. 6 summarizes the accuracies obtained for all the products,
including the separate contribution of each stage of the DSS. Out of
all the components, updating for agricultural land contributed most
for the accuracy increase by the DSS.

Discussion

A Landsat TM image was pre-processed and classified using
three methods: supervised, unsupervised, and hybrid classification
methods. Following this, the classification products’ accuracy was
assessed. A comparison of the products’ accuracy was conducted to
find out if the accuracy differences are statistically significant. It
was found that unsupervised training produces more accurate
results than supervised training. A  hybrid super-
vised—unsupervised classification also produced more accurate
classifications than the supervised classification; however, it did
not improve the accuracy significantly in comparison to the unsu-
pervised classification. All of the classification products were
improved using GIS. First, a majority filter was used to smooth “salt
& pepper” noise. Then, ancillary data from land-use maps and road
maps was applied through a DSS to update the classification
products. As a result, all products were improved significantly by up
to 10%.

While others found supervised classification worked better than
unsupervised classification (Alrababah & Alhamad, 2006), the
opposite was found in this work, suggesting the training did not
account for all the complex spectral variations of land-cover in the
area. It is therefore concluded that one must be intimately famil-
iarized with the research area to be able to train the maximum
likelihood classifier properly. In a very heterogeneous area, collec-
tion of representative signatures is challenging. It was shown that
statistically based clustering using ISODATA can produce superior
results in such a situation.
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Overal Classification Acuracy =70.67%

Overall Kappa Statistics = 0.6480

Overall Classification Accuracy = 60.83%
Overall Kappa Statistics = 0.5308

Overall Classification ccuracy =73.50%
Overall Kappa Statistics = 0.6767

Overall Classification Accuracy = 75.67%
Overall Kappa Statistics = 0.7057

Overall Classification Accuracy = 71.00%
Overall Kappa Statistics = 0.6520

Overall Classification ccumcy = 81.%
Overall Kappa Statistics = 0.7681

Fig. 5. Classification products: (A) ISODATA unsupervised classification; (B) ISODATA + DSS; (C) MLC supervised classification; (D) MLC + DSS; (E) Hybrid classification; (F) Hybrid

classification + DSS.

The best overall accuracy achieved in this work is 81%, which is
below the 85% level set as satisfactory for planning and manage-
ment purposes (Anderson et al., 1976). However, in reality the
accuracy of the classifications reported in many publications was
also generally below the commonly recommended 85% target
(Foody, 2002; Wilkinson, 2005) and its usefulness as a standard is
unclear (Foody, 2008; W.ulder, Franklin, White, Linke, &
Magnussen, 2006). While some studies of land-use and land-
cover achieved better accuracies, it is not always clear from the
publication how the accuracy assessment was conducted (Koutsias
& Karteris, 2003). Others conduct assessments limited by the

amount of available data points (Cingolani et al., 2004; Elmahboub
et al, 2009; Fuller, Groom, & Jones, 1994). Several land-cover
mapping projects for the US using Landsat data present accuracies
such as 65—82% (Homer, Huang, Yang, & Wylie, 2002), 70—98% with
an overall average accuracy across all mapping zones of 83.9%
(Homer, Huang, Yang, Wylie, & Coan, 2004; Homer et al., 2007), and
78.3—88.5% (Xian, Homer, & Fry, 2009). Therefore, while aspiring to
uphold the accepted standards, the accuracy obtained in this study
is quite satisfactory, as it resembles that of analogous studies.

It has been claimed that “the remote-sensing community
appears to have a somewhat masochistic tendency in accuracy
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Table 6
Confusion matrix and accuracy measures for ISODATA unsupervised classification
with post-classification improvements.

Table 8
Confusion matrix and accuracy measures for hybrid classification of the reflective
bands with post-classification improvements.

Class Reference data Sum Class Reference data Sum
1 2 3 4 5 6 1 2 3 4 5 6

Classified data 1 59 8 15 0 0 1 83 Classified data 1 66 26 18 2 5 0 117
2 12 100 46 2 0 0 160 2 5 81 16 3 0 0 105
3 0 4 79 0 0 9 92 3 0 7 125 2 1 1 136
4 0 3 34 39 0 0 76 4 0 5 18 34 0 0 57
5 0 4 4 2 90 0 100 5 0 0 0 2 84 0 86
6 0 0 2 0 0 87 89 6 0 0 3 0 0 96 99
Sum 71 119 180 43 90 97 600 Sum 71 119 180 43 90 97 600

Producer’s accuracy User’s accuracy Conditional Kappa

Producer’s accuracy User’s accuracy Conditional Kappa

83.10% 71.08% 0.67
84.03% 62.50% 0.53
43.89% 85.87% 0.80
90.70% 51.32% 0.48
100.00% 90.00% 0.88
89.69% 97.75% 0.97

92.96% 56.41% 0.51
68.07% 77.14% 0.71
69.44% 91.91% 0.88
79.07% 59.65% 0.57
93.33% 97.67% 0.97
98.97% 96.97% 0.96

The bold parts are used for the computation of the overall accuracy measure.
Overall Classification Accuracy = 75.67%.
Overall Kappa Statistics = 0.71.

assessment, subjecting its thematic maps to an overly harsh and
critical appraisal using pessimistically biased techniques yet
accepting other maps with little question to their accuracy” (Foody,
2008). In this work, the use of ancillary maps for post-classification
processing was done while the authors were aware of this critique.
Assessing the ancillary map accuracies using the same set of vali-
dation data as for the maps derived from remote-sensing classified
data is difficult, since they have different thematic classes. The
interoperability problem associated with differences in map
legends is often the greatest problem encountered in the compar-
ison of thematic maps (Foody, 2007). Translating between legends
is not necessarily straightforward, and can be a major source of
error. It is also implicitly assumed that the maps are perfectly co-
registered, an assumption which has not been verified. Since the
accuracy of the ancillary maps is unknown, the authors hoped to
avoid incorporation of errors from these maps into the products of
this work through the combined use of several data sources. Still,
some error might have been introduced to the final thematic maps
by the use of these maps. Assessing the accuracy improvement for
each stage of the DSS separately, verifies that this error is not
greater than the contribution to the accuracy improvements. Such
verification has not been reported by others who incorporated

Table 7
Confusion matrix and accuracy measures for supervised MLC with post-classifica-
tion improvements.

Class Reference data Sum
1 2 3 4 5 6

Classified data 1 67 32 66 4 9 9 187
2 4 81 20 2 0 0 107
3 0 4 79 3 0 2 88
4 0 2 11 32 0 0 45
5 0 0 1 2 81 0 84
6 0 0 3 0 0 86 89
Sum 71 119 180 43 90 97 600

Producer’s accuracy User’s accuracy Conditional Kappa

94.37% 35.83% 0.27
68.07% 75.70% 0.70
43.89% 89.77% 0.85
74.42% 71.11% 0.69
90.00% 96.43% 0.96
88.66% 96.63% 0.96

The bold parts are used for the computation of the overall accuracy measure.
Overall Classification Accuracy = 71%.
Overall Kappa Statistics = 0.65.

The bold parts are used for the computation of the overall accuracy measure.
Overall Classification Accuracy = 81%.
Overall Kappa Statistics = 0.76.

several sets of ancillary data in their post-classification accuracy
improvements (e.g. Alrababah & Alhamad, 2006; Sader et al., 1995).

It is advised for future studies to adopt this approach of exam-
ining the added value of each component in the process to the final
accuracy. It is not trivial that any addition of data will result in
improvement as this depends on the area, the quality of the initial
classification and of the ancillary data. Each stage in the process
should be evaluated by itself, and also within the context of the
work flow; an addition of one data source might damage the
accuracy, but in combination with another processing stage, or
additional data sources it could prove to be of added value, and vice
versa. Therefore, while it is generally recommended to incorporate
additional spatial data sources with the remote-sensing data, there
is no guarantee for improved accuracy as more spatial data is added
and a trial and error process to eliminate redundant or damaging
data is mandatory.

It was observed that out of all the components of the DSS,
updating of agricultural areas contributed the most for improving
the final products’ accuracies. In spite of including training samples
of crops in varied phonological stages in the MLC, there was still
confusion with rangelands, urban, and forest classes. Since there
are very few fields that are not cultivated for long periods of time,
this problem could be solved by classifying multiple images of the
same year, to capture vegetation peaks in all fields. This sort of
technique was previously used for mapping of traditionally-
managed rice fields (Turner & Congalton, 1998) and forest type
classification (Wolter, Mladenoff, Host, & Crow, 1995). Unfortu-
nately, for the current project, only one Landsat TM 5 image is
available in 2009 over the study from USGS archives, not consid-
ering the Landsat ETM+ 7 with the scan-line corrector off. There-
fore, multi-date classification approach was not attempted.

One of the main conclusions of this work is that the incorpo-
ration of the governmental land-use maps was very effective in
improving the remote-sensing based classification. Alas, the

Table 9
Comparison of remote-sensing based classification products vs. those products after
DSS improvements.

X p-value Overall classification
accuracy improvement
ISODATA 11.68 0.0006 5%
MLC 35.64 <0.0001 10.17%
HYBRID 26.94 <0.0001 8%
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Table 10
Comparison of all classification products to the hybrid classification with DSS
improvement (the most accurate of all based on overall accuracy and Kappa
statistic).

X p-value
ISODATA 24.81 <0.0001
MLC 90.57 <0.0001
HYBRID 26.94 <0.0001
ISODATA + DSS 8.90 0.0029
MLC + DSS 40.48 <0.0001

overlap between the maps and the research area was not complete;
the CBS map had only contributed information within the “Green
line” boundaries (the 1949 armistice lines established between
Israel and its neighbors), and the Survey of Israel map was missing
a section in the south-western corner of the research area. In
addition, military installations were masked in the governmental

maps. Therefore, the DSS contributed to updating only parts of the
classification map. It is the authors’ belief that the accuracy
improvement potential through the use of ancillary data has not
been exhausted; had more complete maps coverage been available,
the DSS improvements would yield better accuracy.

This is the first time (to our knowledge) that rangelands were
defined in a land-use map of this area. This is a very heterogeneous
class, which includes many land-cover types, consisting of different
kinds of soil and diverse vegetation cover types. While the range-
land class consists of the natural, undeveloped environment of the
northern Negev, in which grazing traditionally took place, agricul-
ture land and forests both still support grazing for parts of the year.
Forest managers allow grazing between February and May to
prevent accumulation of burning material, remove vegetation and
encourage water flow into sink areas called limans (Karnieli, Ben-
Asher, Dodi, Issar, & Oron, 1988) for storage, and increasing the
biological diversity through geophyte encouragement (Isaac
Moshe, JNF southern region manager, personal communication).

Fig. 6. Accuracies obtained for reflective bands products, including the separate contribution of each stage of the DSS by itself.
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During the summer, Bedouin herds graze on stubble in cultivated
crop fields, but not in orchards, both incorporated in the agricul-
tural land class. This is an example of the limitations of mapping
land-use using remote sensing; even extensive activities covering
large tracts of land are not always amenable to interpretation from
remote sensor data (Anderson et al., 1976). For this reason, the
products of this work should be used carefully, together with
ancillary knowledge in order to draw conclusions and conduct
estimates of grazing territories.

Conclusions

e When lacking intimate familiarization with a large, complex,
and heterogeneous area, unsupervised classification has
a potential to produce more accurate results than supervised
classification.

Hybrid supervised—unsupervised classification produced more
accurate classifications than the supervised classification;
however, it did not improve the accuracy significantly in
comparison to the unsupervised classification.

Using a decision support system for updating the map based on
expert knowledge and ancillary GIS data improved the classi-
fication accuracy significantly in all cases by 5—10%. There is
great potential in this technique, but it depends on the avail-
ability of quality ancillary data. In the case of the northern
Negev this potential is not fully realized yet due to partial
coverage of the available land-use maps.
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