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Abstract—Advanced classifiers, e.g., partial least squares
discriminant analysis (PLS-DA) and random forests (RF), have
been recently used to model reflectance spectral data in gen-
eral, and of soil properties in particular, since their spectra are
multivariate and highly collinear. Preprocessing transformations
(PPTs) can improve the classification accuracy by increasing the
variability between classes while decreasing the variability within
classes. Such PPTs are common practice prior to a PLS-DA, but
are rarely used for RF. The objectives of this paper are twofold:
to compare the performances of PLS-DA and RF for modeling
the spectral reflectance of soil in changed land-uses with differ-
ent treatments and to compare the effects of nine different PPTs
on the prediction accuracy of each of these classification methods.
Differences in six physical, biological, and chemical soil proper-
ties of changed land-uses from the northern Negev Desert in Israel
were evaluated. Significant differences were found between soil
properties, which are used to classify land-uses and treatments.
Depending on the dataset, different PPTs improved the classifica-
tion accuracy by 11%–24% and 32%–42% for PLS-DA and RF,
respectively, in comparison to the spectra without PPT. Out of
the PPTs tested, the generalized least squares weighting (GLSW)-
based transformations were found to be the most effective for most
classifications using both PLS-DA and RF. Our results show that
both PLS-DA and RF are suitable classifiers for spectral data,
provided that an appropriate PPT is applied.

Index Terms—Generalized least squares weighting (GLSW),
land-use changes, partial least squares discriminant analysis
(PLS-DA), preprocessing transformations (PPTs), random forests
(RF), soil spectroscopy.

I. INTRODUCTION

R ECENT assessments of soil ecosystem functions and

their consequences for global sustainability accentu-

ate the importance of soil resource management in different
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land-uses for both present and future societal welfare [1], [2].

Soil is a complex material that is extremely variable in its phys-

ical, biological, and chemical compositions. The soil body is a

product of five factors: climate, time, organisms, topography,

and parent materials [3]. The great variability in soils is the

result of the interactions of these factors and their influence on

the formation of different soil profiles [4]. Reflectance spec-

troscopy in the visible (VIS, 400–700 nm), near infrared (NIR,

700–1100 nm), and shortwave infrared (SWIR, 1100–2500 nm)

regions is a well-established source of rich information about

the composition of the Earth’s surface, in general, and about

soil, in particular [5]. It is a rapid, nondestructive, reproducible,

and cost-effective analytical method for soil management [6].

The relative amounts of energy reflected from surfaces vary as

a function of wavelength. Several factors affect soil reflectance

in the VIS-NIR-SWIR, such as the soil mineralogy (e.g., iron

oxides, clay minerals, and carbonates), with additional effects

due to soil water content, organic matter content, soil texture,

and soil roughness [7]–[10]. Features in reflectance often result

from vibrations in C–H, O–H, or N–H chemical bonds and min-

erals [11]. Therefore, reflectance can be used quantitatively to

characterize soil properties.

Reflectance spectroscopy is used in chemometrics to con-

struct classification and regression models to predict target

attributes. While regression methods are used to model the

spectral signature of a target based on specific physical, bio-

logical, or chemical properties, classification is used to group

spectral signatures into categories [12]–[15]. Recently, imaging

spectroscopy has used chemometrics techniques for the classi-

fication of hyperspectral images [16]–[18]. Since hyperspectral

data are highly collinear [19], and owing to their multivariate

nature, multivariate analysis techniques are used in order to

model the holistic relationship between samples [20]. In prac-

tice, the number of test samples is often smaller than the number

of spectral bands used for classification. Spectral and hyper-

spectral data are similar, in this sense, to other complex multi-

variate datasets, such as metabolic data [21], [22], and genetic

data [23], and, therefore, similar analysis techniques can be

applied. Since multivariate regression and principle component

analysis (PCA) performances are not optimal under the above-

mentioned conditions, more advanced methods are adopted to

tackle the problem [24]. These methods can be divided into

two groups: parametric and nonparametric approaches. In this

paper, representatives of each group are explored.
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The partial least squares discriminant analysis (PLS-DA)

[25] is an increasingly popular parametric method for the super-

vised classification of spectral data [26]. Its strength lies in

performing dimensionality reduction while simultaneously car-

rying out classification. The PLS–DA is a variant of PLS model-

ing and aims to find the variables and directions in multivariate

space that determine the known classes in a calibration set. It is

similar to the unsupervised PCA [27] in the sense that both are

methods for dimensionality reduction by projecting the origi-

nal spectral bands into new components through the calculation

of their loadings. However, PLS-DA rotates the PCA compo-

nents to maximize the covariance between the samples of each

class, to sharpen the separation of classes, whereas PCA max-

imizes the variance between the components. Consequently,

PCA identifies variability in the whole dataset, and does not

differentiate between variance within and between groups. For

this reason, components, or latent variables (LV), produced by

PLS-DA, are much more suited for the classification of hyper-

spectral data [28]. PLS-DA provides understandable graphical

means of identifying the spectral regions of difference between

the classes and also allows a statistical evaluation as to whether

the differences between classes are significant. In addition to

the generation of strong prediction models, the variable impor-

tance in projection (VIP) can be computed to rank the spectral

band relevance and to determine a subset of spectral bands

that are important for the model’s prediction [29]. Accordingly,

PLS-DA exhibits properties desired by users of spectral data.

A representative of the nonparametric methods group, ran-

dom forests (RF), is a machine-learning method that possesses

attractive features for the classification of hyperspectral data.

RF is an ensemble classification technique that uses a major-

ity vote of a combination of classification trees to classify the

data [30]. Each tree is created from a randomly sampled subset

of the data via bagging, or bootstrap aggregation [31]. Much

like PLS-DA, RF also performs a predictor importance rank-

ing, which allows the explicit elimination of irrelevant features

[32]. Therefore, RF is suitable for hyperspectral data analysis

[33], [34], owing to its ability to handle multivariate data that

include redundant or irrelevant bands and a built-in accuracy

assessment.

Several studies have combined PLS and RF approaches. One

study used a PLS approach for feature extraction and then

applied RF for classification [35]. Another study used both

PLS-DA and RF as complementary feature selection methods,

to corroborate the selection of the most important features of the

model by independent methods [36]. Therefore, it was shown

that a combination of both feature selection strategies is benefi-

cial. Other studies compared RF and PLS in terms of prediction

accuracy [37]. Since the feature selection capabilities of the two

approaches are of great interest, they are often compared [22],

[24]. Even though the feature selection properties of both meth-

ods have not been specifically compared for spectral reflectance

data, this issue has been sufficiently explored using similar

datasets.

In this regard, it should be noted that less attention has

been given to research into the preprocessing effects on the

modeling accuracy. The importance of selecting a proper pre-

processing transformation (PPT) for modeling processes using

spectroscopy was previously discussed [38]. Spectral PPTs are

employed to remove any inappropriate information that cannot

be correctly handled by the modeling techniques. The pur-

poses of preprocessing are to linearize the response of the

variables and to remove extraneous sources of variance that

are not of interest in the analysis. Prior to classification, PPTs

are used to increase the variability between classes while, at the

same time, decreasing the variability within classes and, thus,

enabling better discrimination of classes. The different PPTs,

or their combinations, need to be selected based on dataset type

and its quality [38]. Therefore, data preprocessing can play an

important role in increasing the accuracy of the classification.

Two concurrent research gaps were identified. First, although

both PLS-DA and RF classification have already been used for

hyperspectral remote sensing applications [39]–[44], to the best

of our knowledge, the performance accuracy of RF has not been

compared with PLS-DA for the classification of reflectance

spectroscopy or remote sensing data. Where variants of these

methods were compared for regression analysis, standard pre-

processing took place without individual optimization for each

method [45]. This leads us to the second gap. Although the

application of different PPTs to the spectra prior to the PLS-

DA classification of hyperspectral data is quite common [16],

[46]–[48], we are not aware of publications that have exam-

ined the effect of similar PPTs prior to RF classification. In fact,

RF is sometimes used without preprocessing the spectral data

except for the removal of noisy bands [41], and thus, the poten-

tial of the RF classifier may be under-realized. Filling these

two knowledge gaps will improve the use of these approaches

in environmental science and engineering, in general, and the

ability to classify spectral reflectance soil data, in particular.

The aim of this study is to apply PLS-DA and RF classifica-

tion techniques to the spectral reflectance of soil samples from

changed land-uses in the semiarid area of the northern Negev

Desert in Israel. Land-use classification based on spectral data

was previously performed for this area [49], but in addition,

classification of land-use based on soil function can improve the

land management of these areas. Since land-use changes and

management practices affect soil quality and function, mon-

itoring the effects is essential. Using laboratory analyses of

soil physical, biological, and chemical properties, to measure

the response of soil to land-use practices is feasible but highly

expensive, as well as time- and labor-consuming [13]. On the

other hand, reflectance spectroscopy is a diagnostic screening

tool that can aid the development of reliable, specific spectral

definitions to characterize soil. This technique can assist in the

environmental management of ecosystems going through land-

use changes [50]. Consequently, the application of the above-

mentioned classification methods to classify soil responses to

land-use changes is expected to be effective. We hypothesize

that when spectral data are preprocessed to improve the class

discrimination for one classifier, it may change the performance

of another classifier as well. Furthermore, we hypothesize that

differences in soil physical, biological, and chemical properties

will be expressed in the ability to spectrally classify the dataset.

Therefore, the objectives of this paper are twofold: 1) to com-

pare the performance of PLS-DA and RF for the classification

of spectral reflectance data, and 2) to compare the effects of
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different PPTs on the prediction accuracy of each of these

classification methods.

II. METHODS

A. Study Ecosystems

The three study sites are all located in the northern Negev

Desert of Israel, across the transition between the arid and semi-

arid zones. This area is characterized by a mean annual rainfall

of 200–300 mm that is concentrated during the rainy sea-

son between November and April. Average daily temperature

ranges from 10◦C in the winter to 30◦C in the summer. Three

different land-uses were selected for the study: 1) afforestation;

2) traditional grazing; and 3) agro-pastoral grazing (Fig. 1).

In addition, each land-use includes several treatments (man-

agement strategies) as presented in Table I. The afforestation

land-use includes a natural shrubland and a planted forest. In

each of these, both open and understory patches were studied.

The traditional grazing land-use includes a natural area with

no grazing (where grazing was excluded), compared to the tra-

ditional grazing area, in the north- and south-facing slopes. In

the agro-pastoral land-use, three different treatments were com-

pared, including an abandoned field, where grazing has been

excluded, an abandoned field with grazing, and a monoculture

agro-pastoral field (wheat field). None of the study plots were

fertilized or irrigated.

B. Data Description

Soil samples were collected for laboratory and spectral anal-

ysis in August 2011, at the peak of the dry season, from a

depth of 0–0.15 m. Thus, the soil water content in the sam-

ples was minimal. Sampling was conducted using a stratified

random sampling strategy. For each treatment, the samples

included five quadrates of 1 m2, randomly placed (n = 5). In

each quadrate, four soil samplings of about 700 gr of soil were

collected for laboratory measurement (N = 55). Additionally,

four more soil samples of about 500 gr were collected in each

quadrate for spectral laboratory measurement (n = 55). In total,

220 soil samples were collected (repeated measurements of four

soil samples from each quadrate) for laboratory measurement

and an additional 220 soil samples for hyperspectral measure-

ments. All soil samples were transferred to the laboratory and

were stored unopened at room temperature until analysis. Six

physical, biological, and chemical properties that include: soil

texture (fractions of clay, silt, and sand), soil organic matter

(SOM), pH, electrical conductivity (EC), extractable ammo-

nium (NH4
+), and extractable nitrate (NO3

−) were selected.

More details of these analyses are described by Paz-Kagan et al.

[51]. All laboratory measurements were performed according to

the Cornell soil health test (CSHT) standards [52]–[54].

In addition, the soil samples were taken to the laboratory for

spectral measurements. Prior to the spectral measurements, the

soil samples were ground and sieved through a 2-mm sieve.

Soil samples were measured with the portable analytical spec-

tral devices (ASD) Field Spec Pro spectrometer that measured

the spectral range of 350–2500 nm through a 25◦ field of

view. The position of the sensor was vertical in relation to the

Fig. 1. Studied ecosystem of the changed land-uses. Location map of the sites

in the northern Negev Desert in Israel: 1) afforestation, 2) traditional grazing,

and 3) agro-pastoral grazing.

target, at a distance of 18.5 cm above the sample platform.

The ground field of view was circular with a diameter of

8 cm. The instrument was recurrently calibrated to spectral

reflectance using a standard white reference panel (Spectralon

Labsphere Inc., North Sutton, NH, USA). Reflectance data

were collected under stable illumination from two directions

while the spectrometer’s fiber aperture was fixed at a constant

height of 20 cm above the sample platform. The bidirectional

illumination reduced the effects of micro-topography shadow-

ing. To further eliminate bidirectional reflectance distribution

function (BRDF) effects, each sample was measured four times,

while rotating 90◦ between each reading [55], [56]. The four

readings were later averaged to a final value representing the

sample at a spectral resolution of 1 nm.

C. Statistical Analysis

Analyses of variances for all soil properties were tested

using: 1) a general linear model (GLM) analysis of random

effect (Nested-ANOVA), and 2) an one-way ANOVA for the

average sample of each quadrate in a treatment (n = 5). The

separation of means was subjected to a Tukey honest sig-

nificance difference (HSD) test for a significant difference.

Differences in soil properties were tested for significance at

p ≤ 0.05 between changed land-uses and treatments and by

the results of the F-statistic test. The statistical analysis was

performed with STATISTICA Version 10, 2011 software.

D. Preprocessing Transformations (PPTs)

Several PPTs were tested in this study, including averag-

ing, centering, smoothing, standardization, normalization, and

other methods. Several of the most frequently used meth-

ods in spectroscopy that are embedded in the PLS-Toolbox

(Eigenvector Research Incorporated) were included in the

study.
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TABLE I

DIFFERENT LAND-USES INVOLVED IN THIS STUDY: AFFORESTATION, TRADITIONAL GRAZING, AND

AGRO-PASTORAL GRAZING, ALONG WITH DIFFERENT TREATMENTS FOR EACH LAND-USE

1) Auto scaling (AS) is an exceptionally common PPT that

subtracts the spectral signature of each sample from the

mean spectral signature (mean-centering, MC), followed

by dividing each variable by the standard deviation of the

variable. Under these conditions, each variable is scaled

such that its useful signal has an equal footing with the

other variables’ signals [57].

2) The standard normal variate (SNV) normalization trans-

formation scales each sample by the mean and standard

deviation of its multiple variables. The PPT is applied

to each spectrum individually by subtracting the spec-

trum mean and dividing by the spectrum standard devi-

ation [58].

3) Smoothing, using the Savitzky–Golay algorithm [59], is

a simplified least squares fit convolution in which suc-

cessive subsets of adjacent data points are fitted to a

low-degree polynomial. Smoothing is a low-pass filter

used for removing high-frequency noise from samples;

it reduces noise without significant loss of the signal of

interest [59]. The convolution can be understood as a

weighted moving average filter, with weights given as a

polynomial of a certain degree. This transformation was

found to be an optimal spectral PPT in similar studies

[50], [60], [61].

4) For first and second derivatives of the reflectance spec-

tra, we used the Savitzky–Golay smoothing algorithm on

first derivatives (SG1D), second derivatives (SG2D), and

for simple smoothing (SGS). All of these were performed

using a 15-band window and a third-order polynomial fit.

5) Multiplicative signal correction (MSC) is one of the most

commonly used normalization transformations; the light

scattering is estimated for each sample, relative to an

ideal sample obtained by averaging the complete spectral

range of the dataset. It is a relatively simple processing

step that attempts to account for scaling effects and offset

effects. Each spectrum is corrected, such that all sam-

ples appear to have the same scatter level as the reference

spectrum [62].

6) Generalized least squares weighting (GLSW) produces

a filter matrix based on the differences between pairs

or groups of samples that should otherwise be similar

[57]. The single adjustable parameter α that defines how

strongly GLSW lowers weight interferences was set to

0.02. Adjusting α toward larger values (typically above

0.02) decreases the effect of the filter, while smaller α

values (typically 0.001 and below) apply more filtering.

The effects of the PPTs on spectral data to which no processing

was applied prior to classification for both classification meth-

ods (PLS-DA and RF) were compared. In addition, we applied

combinations of different PPTs that were found to be success-

ful in previous studies: SG1D + SNV [63], MSC+ SG2D +

MC [64], and SGS + AS +GLSW [51]. Since the preprocess-

ing was performed with a PLS-Toolbox, other PPTs that are

not included in this toolbox were not part of the comparison.

E. Classification and Accuracy Comparison

Classification was performed for each of the land-uses on

its own: afforestation (four classes), traditional grazing (four

classes), agro-pastoral grazing (three classes), and for all the

samples, by aggregating treatments in each land-use, to perform

a land-use classification (three classes) (Table I). Following

the different PPTs, each transformed dataset was classified

using both PLS-DA and RF. The PLS-DA classification was

performed with the PLS-Toolbox. The number of LV was

selected based on the recommendation of the PLS-Toolbox

optimizing algorithm [57]. RF classification was performed by

the TreeBagger command in the MATLAB Statistics Toolbox

(Mathworks). For each model, 500 trees were grown. The cross

validation of the classification models was performed using 10

repeated random subsampling validation sets [65], [66], with a

2:1 split ratio between the calibration and the validation sets.

Subsequently, the accuracy was assessed using these same 10

validation subsets every time. The results of each set of 10

classifications were averaged. For each averaged classification,

the Kappa statistic was calculated as a measure of classifica-

tion accuracy. We used the approximate large sample variance

of the Kappa statistic to estimate its variance [67]. The vari-

ance estimations were used to determine if one classification

is significantly more accurate than another by performing a

two-tailed Z-test with α = 0.05 [68].

III. RESULTS

A. Soil Laboratory Measurement

The soil properties across the three land-use types are

presented in Table II with their mean values along with their

standard deviations and significance values. In the afforestation
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TABLE II

ANALYTICAL RESULTS OF SOIL PROPERTIES IN DIFFERENT LAND-USES AND TREATMENTS

Statistics include: average value, standard deviation, and significant differences between treatments.

SOM, soil organic matter; EC, electric conductivity; NH4, ammonium; NH3, nitrate; NS, not significant.
a, b, and c indicate significant differences between treatments.

land-use, SOM was significantly higher in the forest than in the

shrubland treatments. In addition, significant differences in soil

texture were observed between the silty-loam soil in the natural

shrubland and the loam soil in the forest. In the traditional graz-

ing land-use, the treatments with no grazing showed significant

reductions in SOM and pH compared to the grazing treatments,

in both north- and south-facing slopes. However, the soil NH4
+

and NO3
− did not respond to the long-term grazing, but showed

significant differences according to the topographic aspect. In

the agricultural land-use, the agro-pastoral grazing treatment

showed significant increases in NH4
+ and NO3

− compared to

the abandoned field with no grazing. The abandoned field with

grazing showed significant increases in SOM, EC, and NO3
−

and a reduction in NH4
+ compared to the abandoned field with

no grazing. These differences in the soil properties indicate

that changes in the soil quality are the result of different
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Fig. 2. Examples of the Preprocessing Transformations (PPTs) effects on the average spectral signatures of the three land-use classes: afforestation, traditional

grazing, and agro-pastoral grazing. The purpose of preprocessing the spectral signatures is to remove extraneous sources of variation that are not of interest in the

analysis, thus enabling better class discrimination. The examples in this figure demonstrate that some transformations are more suited for this task than others:

AS, MSC, SGS, SG1D, and GLSW.

management practices, and can be identified by reflectance

spectroscopy. A previous study showed that these changes in

soil quality can be classified from reflectance spectra [51].

B. Preprocessing Transformations (PPTs)

Fig. 2 demonstrates several of the above-mentioned PPTs

that were applied to the average VIS-NIR-SWIR reflectance

spectra of the soil samples that represent the three land-uses.

Fig. 2 shows that the spectral signatures that were not pre-

processed are similar and not easily distinct from each other.

However, with some PPTs, the slight differences between these

spectral signatures can be accentuated in a way that enables

better discrimination between classes. These differences in the

spectral signatures occur because of differences in the soil

physical, chemical, and biological properties of the differ-

ent land-uses and treatments [51]. Fig. 3 shows the effect of

spectral preprocessing on the class separability by two PLS

LV. When no preprocessing is applied, the classes are mixed

together. Smoothing alone does not allow better class separa-

tion in this case. However, other PPTs perform better, to various

degrees. Visually, GLSW unmistakably discriminates between

the classes in the best manner. SGS offers little improvement

in class discrimination, while AS, MSC, and SG1D offer bet-

ter discrimination than no preprocessing, but the categorical

clustering is not as clear with these transformations relative

to GLSW. Therefore, the results, presented in Figs. 2 and 3,

suggest that several of the PPTs are suitable for increasing the
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Fig. 3. Examples of PLS-DA model output following several PPTs. The samples are projected onto a plane defined by two LV. This view is useful to demonstrate

class separability. The transformations used are: AS, MSC, SGS, SG1D, and GLSW.

variance between groups prior to classification. Only the PPTs

or combinations of PPTs that produce such discrimination were

used in the classification process.

C. Preprocessing Effect on the Classification Accuracy

Fig. 4(A) shows the PLS-DA classification accuracy for

different PPTs applied to all classifications. In most cases, the

most accurate classification models were for the land-use and

agro-pastoral classifications. There was no significant increase

in accuracy when applying different PPTs prior to the agro-

pastoral and afforestation classification. However, there were

significant improvements in the classification accuracy for the

traditional grazing treatment through the application of some

PPTs. Considering spectra without preprocessing as a basis,

the SGS + AS +GLSW PPT improved the classification
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Fig. 4. (A) PLS-DA and (B) RF classification accuracies in terms of the Kappa coefficient for the land-use classification and for the classification of the different

treatments within each land-use. Z-tests were performed to determine if the classification accuracy, following each PPT, is significantly different than the classi-

fication accuracy of the data without preprocessing. A significant change in accuracy is marked by * (p ≤ 0.05) or ** (p ≤ 0.01). The error bars represent the

standard deviation. Abbreviations used for the different pre-processing transformations: auto scaling (AS); standard normal variate (SNV); multiplicative signal

correction (MSC); smoothing (SGS); first derivative (SG1D); second derivative (SG2D); and generalized least squares weighting (GLSW).

accuracy by 24% for the traditional grazing. Moreover, GLSW

and SGS + AS +GLSW improved the classification accuracy

by 17% and 21% for the afforestation classification, while

SGS + AS +GLSW improved the classification accuracy of

the agro-pastoral classification only by 11%, which was not

significant. The best accuracy, up to 100%, was reached for

the land-use classification where GLSW, and SGS + AS +

GLSW, improved the accuracy by 17%.

Similarly, Fig. 4(B) exhibits the RF classification accu-

racy for different PPTs applied to all classifications. All of

the PPTs but AS showed some improvement in the RF clas-

sification accuracy in comparison to the spectra that were

not preprocessed. The best PPT for all classifications was

SGS + AS +GLSW. Its application increased the accuracy

of the traditional grazing classification by 42%, the agro-

pastoral classification by 32%, and the afforestation classifi-

cation by 37%. The land-use classification improved by 34%

following the application of several combinations of PPTs:

GLSW, SG1D, SG2D, MSC+ SG2D +MC, and SGS +

AS +GLSW.
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Fig. 5. Comparison of RF and PLS-DA in terms of the Kappa coefficient for the

land-use classification and for the classification of different treatments within

each land-use, without applying a PPT. Z-tests were performed to determine if

one classifier is significantly different than the other. A significant difference in

accuracy is marked by * (p ≤ 0.05) or ** (p ≤ 0.01). The error bars represent

the standard deviation.

D. Comparing RF versus PLS-DA

The classification accuracy of RF and PLS-DA for each

PPT is presented in Table III and the results for which no

PPT was applied prior to classification are presented in Fig. 5.

They show that PLS-DA performed better than RF for data

without preprocessing (this was significant for the land-use,

traditional grazing, and agro-pastoral classifications, and not

significant for afforestation). On the other hand, although the

RF accuracy for data that were not preprocessed was very low,

it was improved considerably by performing preprocessing. In

the afforestation classification, applying SGS + AS +GLSW

improved the RF accuracy by 37%. Out of all the PPTs that

were applied to preprocess our data, GLSW, and the combi-

nation of SGS + AS +GLSW were the most effective when

using PLS-DA. These two PPTs were also consistently among

the most effective when using RF. However, in some cases,

other PPTs performed as accurately, as presented in Table IV.

Hence, preprocessing was found to improve the classification

accuracy for both RF and PLS-DA, but the improvements to

the RF accuracy were greater. The spectral discriminations of

land-use classes are due to significant differences in the soil

physical, chemical, and biological properties.

The comparison between RF and PLS-DA performance for

land-use classification using different PTTs is presented in

Fig. 6. When no PPT is applied or when AS is applied, PLS-

DA outperforms RF. By applying other PPTs, it is shown that

RF outperforms PLD-DA. However, it was found that both RF

and PLS-DA perform perfectly for classifying land-use when

GLSW or SGS + AS +GLSW are applied. Thus, it is shown

that both classifiers can be significantly improved by choosing

PPTs that are appropriate for both the classifier and the data.

IV. DISCUSSION

The analysis of the current study showed that when spec-

tral information without preprocessing was classified, PLS-DA

performed better than RF. Yet, with proper preprocessing of the

data, PLS-DA lost its superiority. The results demonstrate how

TABLE III

Z-TESTS THAT DETERMINE WHETHER THE CLASSIFICATION

ACCURACIES OF PLS-DA AND RF ARE DIFFERENT FROM EACH OTHER

FOR DIFFERENT LAND-USES AND FOR DIFFERENT TREATMENTS WITHIN

EACH LAND-USE

The transformations for which the accuracy was significantly different are

marked in bold.

The tested preprocessing transformations are: AS, auto scaling; SNV, standard

normal variate; MSC, multiplicative signal correction; SGS smoothing; SG1D,

first derivative ; SG2D, second derivative; and GLSW, generalized least squares

weighting.

the PPTs that accentuated the variance between classes led to

better classification accuracy. With the application of certain

preprocessing steps, namely GLSW and SGS + AS +GLSW,

the classification accuracy of both methods was improved.

The improvement was even better for RF than for PLS-DA.

This finding is of special interest, since the literature review

revealed that, while spectral preprocessing is a common prac-

tice among PLS practitioners, it is not commonly practiced by

RF users.

The analysis revealed that both PLS-DA and RF are suitable

for soil reflectance data classification. For our specific datasets,

with the application of the optimal PPT, RF performed as well
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TABLE IV

BEST PPT SELECTED FOR THE LAND-USE CLASSIFICATION AND FOR THE

CLASSIFICATION OF DIFFERENT TREATMENTS WITHIN EACH LAND-USE

SGS, Savitzky–Golay smoothing; AS, auto scaling; GLSW, generalized least

squares weighting.

Fig. 6. Comparison of RF and PLS-DA in terms of the Kappa coefficient for all

land-use classifications following the different PPT. Z-tests were performed to

determine if the classification accuracy of one classifier is significantly different

from the other. A significant difference in accuracy is marked by * (p ≤ 0.05)

or ** (p ≤ 0.01). The error bars represent the standard deviation.

as PLS-DA or slightly better, but more spectral datasets need

to be examined before determining that it is superior to PLS-

DA. The classifiers may not perform in the same manner for

other datasets. While our analysis did not take into account the

computational resources demanded by each method, for large

datasets, the processing time might be an important considera-

tion, especially if results are needed in near real-time. In these

cases, the RF classification approach may be too slow, and,

therefore, fast-performing linear classifiers, such as PLS-DA,

would be preferable [69].

In our case study, with the application of optimal PPTs,

the accuracy of all classifications was near perfect. Therefore,

even the high similarities between treatments in the same land-

use do not pose a challenge for the tested classifiers when

optimal PTTs are applied. For the less than optimal PPTs,

the number of classes seems to be a determining factor for

accuracy. The agro-pastoral PLS-DA classifications, divided

into three classes with relatively high spectral separability,

were very accurate, even without preprocessing, and were only

slightly improved following the preprocessing. On the con-

trary, when RF was used to classify the agro-pastoral dataset

without preprocessing, it produced low classification accu-

racy. However, most of the PPTs improved the RF Kappa

statistic to over 0.9. Moreover, the classifications of tradi-

tional grazing and afforestation, divided into four categories,

were, for the most part, unfavorably accurate, but they too

improved following most of the PPTs. These results suggest

that when classifying soil using spectral data, and especially

when the class separability is not high, the selection of the

right PPT can significantly improve the classification model’s

accuracy.

PPTs change the input to the classifier in a manner that can

significantly affect the outcome of the classification. Therefore,

their application must be done with caution since class seg-

regation may not always be due to meaningful differences,

but due to noise. In this case study, it was shown that the

significant differences in soil attributes that result from dif-

ferences in management strategies are the cause for spectral

differences between classes [51]. GLSW and the combination

of SGS + AS +GLSW were found to be very suitable for

increasing the variance between classes, while minimizing the

within-class variance. Accordingly, these PPTs produced high

classification accuracy in all the models, for both PLS-DA and

RF. Our experience (unpublished) is that these PPTs also work

well for regression analyses and for other datasets, such as veg-

etation spectral reflectance data. Therefore, we expect that these

PPTs would be suitable for applications using similar spectral

data in the VIS-NIR-SWIR. However, it is known that it is diffi-

cult to predict a priori the most suitable preprocessing method,

and that different methods may be optimal for different datasets.

This study offers a framework for selecting suitable PPTs for a

specific dataset.

The main challenge in developing a specific spectral model

is to find the suitable preprocessing approach for achieving

the most accurate classification. The classification accuracy

depends on several additional factors, such as the spectral vari-

ance between classes, the number of classes, noise effects, and

the spectral resolution. Spectral soil signatures are also affected

by soil aggregation, particle size distribution, water content, and

the presence of additional elements in the soil, such as veg-

etation litter, rock particles, and mineral deposits. Therefore,

standardization of the sample preparation and measurement

protocols are required. When the dataset offers good class sep-

arability, more than one PPT could produce a highly accurate

model. However, when the differences between the classes are

less apparent, either because the spectral differences are smaller

or because fewer samples are available for calibration, some

PPTs may work better than others to produce an accurate clas-

sification. In addition to this complexity, when moving from

point measurements to imaging spectroscopy, the transition is

not only from micro- to macroscales, but we encounter a whole

new set of predicaments. Among these challenges are a low

signal-to-noise ratio, atmospheric interference, large datasets,

the BRDF effect, and more. Preprocessing may be relevant for

dealing with some of the problems associated with imaging

spectroscopy.

V. CONCLUSION

Our results show that the PLS-DA and RF are both capable

classifiers for modeling spectral reflectance soil data with high

accuracy. However, under the same conditions, each classifier

produces different accuracy, and one does not always trump

the other. Our results further show that by applying a suitable

data PPT, the accuracy of soil spectroscopy is significantly
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improved, while each of the classifiers’ performance is changed

in a different manner. When the spectra are not subjected to

any preprocessing, PLS-DA is definitely more accurate than

RF, but with a proper preprocessing algorithm, both classifiers

do considerably well, and RF can sometimes perform better

than PLS-DA. The accuracy improvement following the best

PPT, in comparison with data without preprocessing, was

32%–42% for RF and 11%–24% for PLS-DA, depending

on the dataset. In most cases, GLSW and a combination of

SGS + AS +GLSW were found to be very effective in data

transformation, leading to an accurate classification. This study

offers a framework for selecting a suitable PPT for a specific

dataset with different classification methods. Future studies can

examine the effect of preprocessing on additional classifiers,

such as support-vector machines and artificial neural networks,

using additional preprocessing methods, and their application

to other reflectance datasets.
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