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A B S T R A C T

The rapid growth in the global population over the past few decades has resulted in the transformation of many
natural ecosystems into human-dominated ones. Land-use (LU) dynamics are accompanied by an increase in
resource exploitation, often causing deteriorated environmental conditions that are reflected in the soil quality.
Soil quality differences between LUs can be observed and measured using near-infrared reflectance spectroscopy
(NIRS) methods. The research goal was to apply, measure, and evaluate soil properties based solely on the
spectral differences between both natural and human-dominated LU practices, in the dryland environment of the
central Negev Desert, Israel. This goal was achieved through the development and implementation of chemo-
metrics techniques that were generated from soil point spectroscopy. Soil quality index (SQI) values, based on 14
physical, biological, and chemical soil properties, were quantified and compared between LUs and geographical
units across the study area. Laboratory spectral measurements of soil samples were applied. Significant differ-
ences in SQI values were found between the geographical units. The statistical and mathematical methods for
evaluating the soil properties’ spectral differences included principal component analysis (PCA), partial least
squares-regression (PLS-R), and partial least squares-discriminant analysis (PLS-DA). Correlations between
predicted spectral values and measured soil properties and SQI were calculated using PLS-R and evaluated by the
coefficient of determination (R2), the Root Mean Square Error of Calibration, and Cross-Validation (RMSEC and
RMSECV), and the ratio of performance to deviation (RPD). The PLS-R managed to produce “excellent” and
“good” prediction values for some of the soil properties, including EC, Cl, Na, Ca + Mg, SAR, NO3, P, and SOM.
Results of the PLS-R model for SQI are R2 = 0.90, RPD = 2.46, RMSEC = 0.034, and RMSECV = 0.057. The
PLS-DA classification of the laboratory spectroscopy was applied and resulted in high accuracy and kappa
coefficient values when comparing LUs. In contrast, comparing the sampling sites resulted in lower overall
accuracy (Acc = 0.82) and kappa values (Kc = 0.80). It is concluded that differentiation between physical,
biological, and chemical soil properties, based on their spectral differences, is the key feature in the successful
results for recognizing and characterizing various soil processes in an integrative approach. The results prove
that soil quality and most soil properties can be successfully monitored and evaluated using NIRS in a com-
prehensive, non-destructive, time- and cost-efficient method.

1. Introduction

Global population growth over the past few decades has increased
the need for food, shelter, and other services, and has resulted in the
transformation of many natural ecosystems into human-dominated ones
(Foley, 2005). Land-use (LU) change from natural to human-dominated
land is a critical aspect of global change (Orenstein and Hamburg,
2009; Phillips et al., 2017) and may cause deteriorated environmental
conditions (Metzger et al., 2006; Tscharntke et al., 2005). Such LU
changes have enabled humans to increase needed resources, but they

also potentially reduce the capacity of ecosystems to maintain food
production and to regulate climate, soil, and air quality in a sustainable
way. LU practices determine soil quality and soil function, which con-
stitute crucial aspects for future sustainable LU management (Crist
et al., 2017). Therefore, remediation and maintenance of the soil
quality in response to LU is essential (Adeel et al., 2005), especially in
drylands, where the soil undergoes degradation processes.

Assessment of soil quality includes the integration of physical,
biological, and chemical properties as indicators of the soil’s perfor-
mance (Andrews et al., 2004). These key soil properties are dynamically
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variable in space and time. Soil quality assessment can be applied to
either human-dominated LUs, such as agriculture, where the primary
ecosystem service is yield (agricultural productivity), or to natural
ecosystems, where the primary ecosystem service could be the con-
tinuation of the environmental conditions and biodiversity conserva-
tion (Bünemann et al., 2018). The variability of soil indicators makes
soil quality assessment a challenging task (Doran and Parkin, 1994).
Two main approaches for this task are the Soil Management Assessment
Framework (SMAF) (Andrews et al., 2004; Viscarra Rossel et al., 2006;
Wienhold et al., 2009) and the Comprehensive Assessment of Soil
Health (CASH) (Idowu et al., 2009; Moebius-Clune et al., 2016). Both
approaches are based on selecting a Minimum Data Set (MDS), com-
prising a minimum number of indicators (soil properties) for defining
and quantifying soil performance, while avoiding over-complexity of
the soil quality assessment model and maintaining its reproducibility,
ease of sampling, and low cost (Andrews et al., 2004; Karlen et al.,
1997). According to Bünemann et al. (2018), SMAF is a more flexible
framework in terms of selecting indicators using standardized proto-
cols. Once the MDS is selected, the indicators are then transformed into
a normalized score that represents the soil quality index (SQI) value
(Andrews et al., 2004, 2002; Karlen et al., 1997). Soil quality assess-
ment using the SQI method has been widely demonstrated in the lit-
erature, for both agricultural purposes (Mandal et al., 2001; Mukherjee
and Lal, 2014; Triantafyllidis and Kontogeorgos, 2018) and ecological
monitoring (Blecker et al., 2012; Lima et al., 2016; Paz-Kagan et al.,
2016). In the case of ecological preservation, the SQI is not an absolute
independent score, as it sets as an indicator for the degree of change in
reference to the uninterrupted natural soil.

SQI requires extensive soil analyses, which remain expensive, as
well as time and labor-consuming when using the standard procedures
(Paz-Kagan et al., 2014). Therefore, more straightforward, time and
cost-efficient, and non-destructive soil quality assessments are required.
Near infrared reflectance spectroscopy (NIRS) grants the ability to as-
sess various aspects of soil quality with non-destructive, reproducible,
and cost-effective techniques. NIRS is based on hyperspectral data, in-
cluding the visible (VIS, 400–700 nm), near-infrared (NIR,
700–1100 nm), and shortwave infrared (SWIR, 1100-2500 nm) spectral
regions. Studies have shown the advantages of using RS in time-effi-
ciency and the simultaneous analyses of multiple soil properties (Awiti
et al., 2008; Cécillon et al., 2009; Romsonthi et al., 2018; Velasquez
et al., 2005; Veum et al., 2017). Paz-Kagan et al. (2014) demonstrated
the use of 14 soil quality indicators in the variability of soil attributes

among three different LU types that changed from managed to un-
managed and vice versa. They developed the spectral soil quality index
(SSQI) based on the NIRS of physical, biological, and chemical soil
analyses. The SSQI integrates all relevant scored SQI indicators and
then classifies them according to their soil spectral differences.

Although soil spectroscopy has been demonstrated successfully in
many areas, these studies were mostly related to temperate climate
regions that were subjected to anthropogenic effects, mainly agri-
cultural systems, and were limited to a few land-use practices. The
application of NIRS has not been previously applied in such hyper-arid
environment. This is possibly due to the relatively small-scale human
activity and LU changes that generally occur in such scarcely populated
regions with extreme climatic conditions. Hence, the main goal of the
current research is to assess the effect of LU alteration, with different
management practices, on soil quality in a dryland area. The novelty of
this research lies in applying the combined SQI and NIRS methods in a
water-scarce and nutrient-poor arid area. This objective was accom-
plished by integrating physical, biological, and chemical analyses, as
well as NIRS laboratory-derived data, followed by the SQI method, in
the Avdat region, Israel. The research questions include: (1) How do the
different management practices (LU) impact soil indicators in an arid
area? (2) Which indicators are more sensitive to different management
practices?, and (3) Can soil properties and SQI be predicted based on
NIRS in arid soils?

2. Material and methods

2.1. Study area

In this study, the Avdat region, a scarcely populated dryland region
in the Negev Desert of Israel, was selected. The area, which extends
over 24 km2, was chosen since it includes two main human activities,
crop cultivation (mainly vines and olives) and the grazing of goats and
sheep, that are adjacent to natural park reserves with unique ecological
values (Ohana-Levi et al., 2018). The study area (Fig. 1) contains three
LU categories, including two types of settlements: agricultural farms
(single-family), agro-pastoral grazing land (Bedouin villages), and
natural park reserves. The area is defined as arid by the aridity index
(UNEP, 1992), which is calculated by the ratio between the annual
rainfall (80–100mm) and the annual potential evaporation (about
1700mm), in which the precipitation gradient decreases and the eva-
poration rate increases the further southward from the Mediterranean

Fig. 1. (A) Location of the study area in
the Negev Desert, Israel; (B) the se-
lected study area with the sampling
points of the three land-use categories
(agriculture, grazing, and natural re-
serves), whose locations were selected
from a prior stratified random metho-
dology. Full names and number of soil
samples for all sampling sites are pre-
sented in Table 1.
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Sea (Ziv et al., 2014). The average daily temperature ranges from 5 °C
in the winter to 32 °C in the summer (Olsvig-Whittaker et al., 2012).
Lithology is dominantly characterized by limestone mixed with dolo-
mite, chalk, and marl. The soil type in the area is homogeneous, con-
sisting mostly of loess soil (Ohana-Levi et al., 2018). Soil development
occurs mostly in the upper parts of the watershed, where shallow pat-
ches of soil cover exist among steep barren limestone rocks, and in the
lower parts, which consist of colluvium embedded with unconsolidated
rocks. The soil columns range from 80 cm in the upstream part to
several meters in the lower parts (Olsvig-Whittaker, 1983; Yair and
Danin, 1980).

2.2. Soil sampling

The sampling area included 14 different sites within the three LUs.
Selecting the precise soil sample locations was done by conducting a
prior stratified random methodology (SRM, Fig. 2) that was based on
three different inputs: (1) elevation based on a digital elevation model;
(2) soil type based on a pedology map, with the spatial distribution of
soil texture from the official Survey of Israel data; and (3) LU categories
based on the classification of a Landsat 8 image acquired on 13 August
2016, with an overall accuracy of 99.8% (Ohana-Levi et al., 2018). The
SRM allows the selection of random soil samples based on the variation
of the different data sources (Kothari, 2004).

2.3. Geographic units and laboratory analysis

Since the study area stretches over a broad and elongated cross-
section of approximately 11 km in length (Fig. 1), with different ele-
vations and climatic attributes, soil indicator values may present some
significant differences within the study area that are more related to the
environmental gradient than to LU management practices. For example,
elevation gradually increases southwards (Fig. 2A), whereas the
northern and central parts share a relatively flatter surface around the
Zin’s downstream basin. Lithology differs as well (Fig. 2B), in which
smoother loess soils reside around the stream path. Evapotranspiration,
combining precipitation and temperature as environmental factors,
shows significant differences between all three parts, in which the mean
annual rates are 1671, 1694, and 1717mm for the northern, center, and
southern sections, respectively. Therefore, the statistical analysis was
divided into three geographical units to minimize the environmental
effect and to evaluate the management practices’ effects on soil quality.

Soil samples from the different management practices were col-
lected and transferred to the laboratory for physical, biological, and
chemical soil analysis and laboratory spectroscopy. A total number of
121 soil samples were collected in April 2017 from 14 different sites
scattered across the landscape. These are presented in Table 1 with
their respective LU, landscape position, elevation, soil class, and tex-
ture. The soil samples were collected from the upper topsoil at a depth
of 0–15 cm, mostly from lower topographical locations around low-

Fig. 2. Stratified random survey components of Avdat region: (A) elevation, (B) lithology, (C) land use-land cover (LULC) classification, and the study area’s
geographical units: north, center, and south.

Table 1
Distribution of 121 soil samples among 14 sites across the Avdat region. Each site includes several samples, land-use type (agriculture, grazing, or natural),
topographic landscape position and mean elevation, and soil class based on mean fractional soil texture.

Sampling site Number of samples Land use type Landscape position and elevation (m) Soil class and mean fractional Sand, Silt, and Clay (%)

Even Ari farm (AAR) 6 Agriculture Toeslope (547) Loam (40.13, 46.2, 13.67)
Borot Ramaliah (BR) 16 Grazing Toeslope (528) Sandy Loam (63.1, 23.1, 13.8)
Borot Ramaliah-Even Ari (BRAAR) 6 Agriculture Toeslope (527) Loam (51.83, 31.47, 16.7)
Borot Ramaliah natural (BR_N) 9 Natural Valley, Channel (523) Sandy Loam (62.7, 23.17, 14.13)
Beit Hashanti (BS) 13 Agriculture Toeslope, Valley (510) Sandy Loam (53.17, 27.67, 19.16)
Bedouin village by Even-Ari (BV) 5 Grazing Toeslope, Valley (559) Sandy Loam (61.4, 23.6, 15)
El Azazme-Hava stream (EIAZZ) 9 Grazing Footslope, Toeslope (572) Sandy Loam (66.4, 17.86, 15.74)
Eyal Israeli farm (EIZ) 8 Agriculture Footslope (549) Sandy Loam (58.43, 27.82, 13.75)
Ein Avdat (Eovdat) 9 Grazing Footslope, Toeslope (541) Sandy Loam (56.87, 25.52, 17.61)
Havarim stream (HH) 4 Agriculture Toeslope (553) Sandy Loam (61.3, 24.7, 14)
Havarim stream natural (HH_N) 10 Natural Backslope, Footslope (524) Sandy Loam (60, 30.2, 9.8)
Bedouin village by Beit Hashanti (ID) 8 Grazing Toeslope (525) Sandy Loam (62.15, 23.52, 14.33)
Lifa gal viewpoint (LGAL) 8 Natural Summit (597) Sandy Loam (58.49, 24.7, 16.81)
Zin stream (ZIN) 10 Natural Toeslope, Channel (592) Sandy Loam (59.22, 25.37, 15.41)
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slopes and stream basins, where the soil column is more developed.
Each soil sample was assigned an accurate location using a portable
GPS device. The soil samples were packed into paper bags, then
transferred and stored unopened at room temperature until analysis and
laboratory survey.

The analytic methods included 14 analyses based on the SMAF
protocol (Wienhold et al., 2009): physical: soil texture (fractional clay,
silt, and sand) for assessing the soil structure and fragmentation, and
the available water content (AWC), related to the plant available water
storage capacity; biological: soil organic matter (SOM), related to en-
ergy and nutrient storage and carbon sequestration, and extractable
nitrate (NO3

−) in the soil, related to nitrogen-containing life building
blocks and nitrogen release; and chemical: pH, electrical conductivity
(EC), extractable chlorine (Cl), extractable sodium (Na), extractable
calcium and magnesium (Ca+Mg), and the sodium adsorption ratio
(SAR), which act as indicators for soil salinization condition, and ex-
tractable phosphorus (P) and extractable potassium (K), which are es-
sential nutrients, available in the soil, for plant growth and health.

The measurement of AWC was conducted by oven-drying the soil
samples at 105 °C to a constant weight, followed by measuring the
weight differences (Scrimgeour, 2008). Soil organic matter (SOM) was
measured by the organic carbon-furnace method after oven-drying soil
samples at 105 °C for 3 h (to remove any CaCO3) and weighing the soil
samples, followed by burning the dry soil in a furnace for 2 h at 500 °C
and re-weighing the soil samples (Casida et al., 1964). Soil nitrogen (N)
was measured as extractable nitrate (NO3

−) by potassium chloride
extractions (Norman and Stucki, 1981). Soil nutrient values (NO3

−, P,
K, Na, Ca, Mg) were extracted by shaking an ammonium acetate plus
acetic acid solution with pH 4.8, which was then filtered through paper,
and analyzed using an inductively coupled plasma emission spectro-
meter (ICP) (Weil and Brady, 1999). The samples’ pH values were
measured by composing a 2:1 part water-soil suspension and de-
termined using the pH electrode probe of a Lignin pH robot. Finally, the
soil EC was examined on a well-stirred 1:1 soil-water suspension (20ml
each), using an EC meter.

2.4. Spectral measurement and processing

The spectral measurements of all 121 soil samples were performed
in laboratory conditions. The soil samples were sieved through a 2-mm
sieve to remove aggregation and stones and were spectrally measured
using the portable Analytical Spectral Devices (ASD) Field Spec® Pro
spectrometer. The ASD spectral range is 350–2500 nm with a 25° field
of view. The spectrometer was recalibrated using a standard white re-
ference panel (Spectralon Labsphere Inc., North Sutton, NH, USA).
Samples were scanned under illumination from four directions, while
the spectrometer sensor was set above the sample at the height of
18.5 cm. The idea behind this step is to diminish the effects of micro-
topography shadowing (bidirectional illumination effects). The mean
value of every four readings was used as the representative sample
signature that was then averaged to one spectral reading. The spectral
resolution of the obtained data was 1 nm for the entire spectral range.

2.5. Development of soil quality index (SQI)

Soil quality indices combine all relevant indicators for soil condition
interpretation within a proportional score. Transforming the indicators
is necessary in order to standardize each indicator on a comparable
scale. All indicators from the laboratory analysis were transformed and
standardized into unitless scores (Si), ranging from 0 to 1, which were
then given a proportional weight and summed. These scores re-
presented each of the indicator’s explanatory contributions to the soil
conditions according to management practices and LU, where natural
ecosystem measurements were set as a reference for the other two LUs.
AWC, SOM, and NO3

− are essential soil quality indicators. Therefore,
the maximum presence of all indicates higher soil quality.

On the other hand, high abundances of EC, Cl, Na, and Ca+Mg soil
properties may indicate a condition in which the soil is under salini-
zation process, which means lower soil quality and functionality.
Therefore, the aim is to observe lower soil salinity values. The re-
maining soil indicator values (pH, SAR, P, and K) are likely to vary
between each LU treatment, where either very high values (e.g., ex-
cessive fertilizing) or low ones may harm the soil’s quality. Hence, an
equal amount needs to be obtained. The sampling sites were grouped
according to their geographical locations (i.e., northern, central, and
southern), and their overall SQI values and physical, biological, and
chemical components were calculated separately.

Eqs. 1–3 and Fig. 3 show the scoring functions, including their re-
spective typical curves, according to the above adjustments and trans-
formations, and based on previous literature (Moebius-Clune et al.,
2016; Paz-Kagan et al., 2014; Seybold et al., 1997; Wienhold et al.,
2009). Three functions can be defined: (1) the “more is better” scoring
curve with positively graduating slopes that characterize AWC, SOM,
and NO3

−; (2) the “less is better” curve for negatively depressing
slopes, which represents EC, Cl, Na, and Ca+Mg; and (3) the “op-
timum” curve that centers around a mean value, which characterizes
pH, SAR, P, and K. The transformations of the original values were
calculated using the following functions (Masto et al., 2007):

=
+

Si
b
1

1more b x a( ) (1)

=
+

Si
e
1

1less b x a( ) (2)

= ×Si e1optimum
x a

b
( )2

(3)

where x is the soil property value, a is the value’s least square deviation
from the mean, and b is the slope of mean according to its standard
deviation (2d2). Soil indicator performances with scores from 1.0–0.8
are considered to be very high scores, 0.8–0.6 are high, 0.6–0.4 are
medium, 0.4–0.2 are low, and 0.2–0.0 are very low scores.

Once the original values were rescaled by their respective functions,
a principal component analysis (PCA) was performed for further in-
terpretation. The PCA is a statistical method that aims to reduce the
number of dimensions within a dataset (Jolliffe and Cadima, 2016). It
transforms correlated variables into a smaller number of significantly

Fig. 3. Examples of scoring curves of the respective transformation functions: (A) more is better, (B) less is better, and (C) optimum.
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different uncorrelated dimensions (variables) called principal compo-
nents (PC), where the chosen number of PCs account for most of the
variability of the data (Hotelling, 1933). The low co-variability among
PCs helps to separate the data into statistically distinct groups. For this
reason, the correlations between variables were calculated. Soil vari-
ables that were highly correlated were removed from the data to pre-
vent redundancy in the model (Jolliffe and Cadima, 2016). PCs with a
higher proportion of variance than 5% were examined. The scored soil
properties were calculated into an additive value of the essential
weighted indicators for each LU, which is the ultimate soil quality index
(SQI) Eq. (4):

= ×=SQI PWi Si 'i

n

1 (4)

where PWi is the PCA weighing factor and Si’ is one of the scoring
functions, depending on the soil property. This final index value is
considered as a total rank of the soil quality, with regard to the ex-
amined management practices and LU under study.

2.6. Correlation and classification of soil and spectroscopy analysis

The correlation between the laboratory soil measurements and their
spectral data was performed using a partial least squares-regression (PLS-
R) cross-validation procedure. PLS-R is a predictive technique for quan-
titative spectral analysis (Paz-Kagan et al., 2014; Viscarra Rossel et al.,
2006). Its main advantage derives from its ability to use multiple pre-
dictor variables to create predictive models with high collinearity. PLS-R
uses covariance between the spectra (predictor: X) and the soil labora-
tory analysis, as well as the SQI (response variables: Y). The focus was
placed on the abovementioned soil indicators and their correlations with
their spectral data. Each soil indicator correlates differently with its
spectral reading, and each has more significant wavelengths with which
it corresponds. This is due to the fact that characteristic wavelengths
differ between each soil indicator and management practice according to
the relationship their physical and chemical structures maintain with the
electromagnetic radiation, which can be measured in a comparative
spectral analysis (Ben-Dor et al., 2009; Cécillon et al., 2009).

Pre-processing transformations (PPTs) were applied and tested on
the spectral signatures in an attempt to improve their prediction ability
through the regression process. Such PPTs include mean and maximum
normalization and baseline offset effects corrections (Tekin et al.,
2014), first and second derivatives of the reflectance values (Fystro,
2002; Shepherd and Walsh, 2002), the second-order polynomial Sa-
vitzky–Golay smoothing algorithm with 11 smoothing points (Savitzky
and Golay, 1964), and generalized least squares weighting (GLSW)
(Martens et al., 2003). The best predictive fitted values were found with
the combination of two PPTs: (1) autoscale and (2) GLSW with a single
adjustable parameter, α, which was set to 0.02 (Paz-Kagan et al., 2015;
Rozenstein et al., 2015) (See Appendix A). To measure the relative
importance of each wavelength, variable importance in projection (VIP)
scores were derived from the PLS-R to determine the significant effect
of each wavelength defined by each soil indicator. Evaluations of the
prediction rate for the regressions between the predicted and observed
soil indicators were made by calculating the Root Mean Square Error of
Calibration and Cross Validation (RMSEC and RMSECV) and the coef-
ficient of determination (R2) values. Therefore, the data needed to be
divided into a calibration dataset (75% of the data) and a randomly
chosen validation dataset (25% of the data), which was used as the
model prediction accuracy. In addition, to standardize the prediction
correlations comparably, the ratio of performance to deviation (RPD)
was calculated as RPD= SD/RMSECV. Chang et al. (2001) proposed
the RPD’s graduated ranking of the prediction models, in which models
with RPD≥2.5 and R2 ≥ 0.80 are considered “excellent,” 2 < RPD ≤
2.5 and R2 ≥ 0.70 are considered “good,” 1.5 < RPD ≤ 2 and R2 ≥
0.60 are considered “moderate,” and RPD≤1.5 and R2<0.60 are
considered “poor”. However, Mcbratney and Minasny (2013) have

warned about the use of both measures as the only indices of the pre-
diction model, since they share a strong relationship and ultimately
present the same concept. Thus, RPD and R2 cannot be used as as-
sessment tools for goodness of fit on their own. Instead, both measures
should be presented and compared along with the RMSEC and RMSECV
of the prediction models to compare the models’ prediction intervals.

Assessment and quantification of the differences in the spectral
variation in soil quality between LUs were conducted using partial
least-squares discriminant analysis (PLS-DA). The PLS-DA categorizes
the continuous predictor variable (X: soil indicators) into separate
classes according to their variance between each group of samples. The
outcome of the PLS-DA is a scatterplot in which each sample is classi-
fied into one of the predetermined classes (LU or sampling site), in
addition to a statistical evaluation of significant differences between
classes.

2.7. Statistical analysis of soil properties and SQI

We applied a one-way analysis of variance (ANOVA) for each soil
indicator and SQI under each particular LU. The distinction between
each pair of LUs made by their separation of means was examined using
a Tukey Honest Significance Difference (HSD) post hoc test, for which p
≤ 0.05 indicates a significant difference. In cases where ANOVA as-
sumptions of the variables were not met for the original data, a loga-
rithmic transformation was applied, followed by a reexamination of the
assumptions. If the indicators’ assumptions were still violated, a non-
parametric Kruskal-Wallis test was conducted, following by a pairwise
Wilcoxon rank-sum test to examine significant differences between
pairs of LUs for each soil property. Statistical calculations and analyses
were performed using the R-Studio version 1.0.143 software (RStudio
Inc., Boston, MA, USA).

3. Results

3.1. Soil property analysis

The laboratory analysis of the soil is shown in Table 2, presenting the
mean values of the soil properties and their standard deviations (SDs),
according to their LU and geographical unit. To remove the minimum
number of outliers from the dataset, by excluding only the extreme va-
lues, we applied the median absolute deviation (MAD) approach that
excludes observations higher or lower than three SDs around the vari-
able’s median value (Leys et al., 2013). Using the MAD method on the
data resulted in the removal of very few outliers, not exceeding 5% re-
moval for any of the soil properties; for some soil properties, no outliers
were removed. Fig. 4 shows the comparative analysis of soil properties
for the whole study area, without the geographical subdivision. In this
case, only small significant differences were noticed between LUs. The
soil texture analysis resulted in the classification of almost all the sam-
pling sites as the sandy-loam soil type (Table1), according to the USDA
soil texture triangle (Groenendyk et al., 2015), with a few soil samples
classified as loam. Similar results were found when comparing LUs across
geographical units (Table 2). One-way ANOVA tests for the original va-
lues showed that AWC and pH had no assumptions violated, and both
showed no significant differences between LUs. Following this, the
transformed data resulted in SAR and SOM properties having no as-
sumptions violated and presenting some significant differences between
LUs, according to the Tukey HDS test, in which for both indicators, the
natural ecosystem LU showed lower values than the other two LUs with
significant differences. For most soil properties, the agro-ecosystems and
grazing LUs showed significantly higher values than those of the natural
ecosystem, notably EC, Cl, Na, and Ca+Mg, which may indicate soil
salinity levels.

Furthermore, the natural ecosystem showed significantly lower soil
nutrient values (NO3, P, and K) than the grazing and agro-ecosystem
LUs, which implies the presence of higher biotic activity (due to
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cropping and herding) in the soil of the latter two LUs. Nevertheless, the
geographical subdivision emphasizes variations even better, where
significant differences were shown between LUs for almost all soil in-
dicators (Table 2). A significant difference was noticed between the
agro-ecosystem sites (located only in the northern and central areas),
for which much higher values were measured in the northern fields
than in the central ones for both salinity (EC, Cl, Na, Ca+Mg, and
SAR) and soil nutrient (NO3, P, and K) indicators. The same soil
properties, as well as the SOM, showed significantly higher values for
the grazing and agro-ecosystem LUs than the natural ecosystem one.
Moreover, significantly higher AWC was found in the central agri-
cultural LU than in the other LUs.

Pearson correlation coefficients (r) for the given soil indicators were
calculated and are presented in Table 3. To understand the relations
and to consider the more powerful correlations between properties,
significant correlations (r≥ 0.5) are marked in bold, and strong cor-
relations (r> ±0.8) are marked in bold and with an asterisk (*).
Multivariate correlations were also generated to avoid redundancy of
properties. Very strong correlations were found between EC and Cl, Na,
and Ca+Mg (r= 0.99, r= 0.95 and r= 0.93; p < 0.01, respec-
tively), between Cl, Na, and Ca + Mg (r = 0.94 and 0.93; p < 0.01,

respectively), between Na and Ca + Mg (r = 0.86; p < 0.01), and
between sand and silt (r = -0.88; p < 0.01).

3.2. Soil quality index (SQI)

The SQI for each soil sample and their respective physical, biolo-
gical, and chemical components was developed using the scores of the
transformed soil properties’ values. The soil texture variables (frac-
tional sand, silt, and clay) and Cl, Na, and Ca+Mg (which are essential
indicators for soil salinity) were excluded from the SQI and PCA cal-
culations due to high collinearity and possible model redundancy
(Jolliffe and Cadima, 2016). The PCA results showed that only three
PCs had eigenvalues greater than 1 that explained 72.70% of the total
cumulative variance of the original data (Table 4). PC1 accounts for
35.83% of the total variance and includes the pH, EC, and NO3 soil
properties. For PC2, the contributory variance was 22.29%, and in-
cludes the AWC and P indicators. The third PC3, with a response to
14.58% of the variation, contains SAR, K, and SOM soil indicators
within 10% of the highest loading values.

The SQI scores and their physical, biological, and chemical com-
ponents for all three LUs are shown in Fig. 5. The mean overall SQI

Table 2
The mean values of each soil property along with its respective land-use and geographical unit: (A) agro-ecosystems; (B) grazing; and (C) natural ecosystems, each
presented with its standard deviation and significant differences between treatments, represented with small letters (a, b, c).

Soil Properties Location Natural ecosystems Grazing Agro-ecosystems

AWC (%) North 37.07 ± 3.27a 39.6 ± 6.55a 35.04 ± 4.06a

Center 34.24 ± 5.53b 35.96 ± 5.48b 40.83 ± 4.58a

South 33.71 ± 5.43a 38.95 ± 7.72a –
pH North 8.08 ± 0.26a 8.1 ± 0.40a 7.99 ± 0.39a

Center 8.01 ± 0.24b 7.96 ± 0.41b 8.3 ± 0.13a

South 8.55 ± 0.28a 8.05 ± 0.27b –
EC (dS/m) North 5.82 ± 7.33b 13.58 ± 24.31a 25.85 ± 29.64a

Center 3.21 ± 3.26b 16.8 ± 1954a 0.75 ± 0.15c

South 9.22 ± 18.81b 18.54 ± 22.1a –
Cl (mg/l) North 45.83 ± 81.66b 147.89 ± 309.15a 296.75 ± 358.69a

Center 23.65 ± 27.21b 171.05 ± 228.55a 1.45 ± 0.71c

South 88.78 ± 201.25b 190 ± 275.17a –
Na (mg/l) North 29.86 ± 44.46b 79.66 ± 162.33a 103.32 ± 150.45a

Center 21.2 ± 26.04b 103.78 ± 145.91a 1.21 ± 0.78c

South 79.74 ± 177.49a 104.11 ± 150.63a –
Ca+Mg (mg/l) North 34.8 ± 44.21b 56.02 ± 81.62b 139.75 ± 162.02a

Center 9.46 ± 8.05b 84.3 ± 99.9a 5.45 ± 1.7b

South 28.22 ± 51.86b 67.37 ± 74.96a –
SAR North 3.37 ± 2.18b 13.46 ± 12.71a 4.9 ± 4.01b

Center 2.86 ± 1.45b 6.48 ± 5.73a 8.33 ± 3.1a

South 6.52 ± 10.28b 22.06 ± 18.64a –
NO3 (mg/kg) North 34.58 ± 41.21b 93.51 ± 111.76a 143.37 ± 154.91a

Center 26.92 ± 30.64b 94.62 ± 109.98a 14.82 ± 7.63c

South 100.07 ± 220.28b 219.34 ± 193.783a –
P (mg/kg) North 9.53 ± 3.14b 56.52 ± 52.91a 13.62 ± 10.19b

Center 13.55 ± 8.62b 31.68 ± 48.5a 17.87 ± 3.91b

South 13.57 ± 5.37b 66.86 ± 51.62a –
K (ml/kg) North 0.5 ± 0.33c 6.41 ± 11.34a 2.1 ± 4.03b

Center 0.42 ± 0.15b 3.1 ± 5.17a 0.48 ± 0.25b

South 0.99 ± 1.41b 15.11 ± 17.71a –
SOM (%) North 1.61 ± 0.8b 3.18 ± 1.48a 3.17 ± 1.35a

Center 1.94 ± 0.3b 2.59 ± 0.7a 2.44 ± 0.47a

South 1.35 ± 0.51b 2.62 ± 1.61a –
Sand (%) North 59.32 ± 11.7a 59.35 ± 7.31a 56.15 ± 9.06a

Center 62.7 ± 6.01a 63.1 ± 8.19a 45.98 ± 11.31b

South 59.22 ± 16.46a 64.61 ± 7.03a –
Silt (%) North 27.75 ± 10.51a 24.58 ± 6.44a 27.24 ± 8.74a

Center 22.86 ± 3.73b 23.1 ± 10.08b 38.83 ± 11.52a

South 25.37 ± 14.89a 19.9 ± 5.45a –
Clay (%) North 12.91 ± 6.4a 16.06 ± 3.8a 16.6 ± 6.22a

Center 14.43 ± 5.3a 13.8 ± 4.66a 15.18 ± 3.72a

South 15.41 ± 6.4a 15.47 ± 3.41a –

Note: AWC: available water content; EC: electric conductivity; Cl: chlorine; Na: sodium; Ca+Mg: calcium and magnesium; SAR: sodium adsorption ratio; NO3:
nitrate; P: phosphorus; K: potassium SOM: soil organic matter; significant differences between land uses are marked with small letters, in which values in each
column with the same letter do not differ significantly when p<α (0.05), using ANOVA and Kruskal-Wallis analyses followed by Tukey and Wilcoxon tests. A: high
values; b: medium values; c: low values.
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Fig. 4. Boxplot representation of each soil indicator value under different land uses of the entire study area: agriculture, grazing, and natural. Note: available water
content (AWC); electrical conductivity (EC); extractable chlorine (Cl); extractable sodium (Na); extractable calcium and magnesium (Ca+Mg); sodium adsorption
ratio (SAR); extractable nitrate (NO3); extractable phosphorus (P); extractable potassium (K); and soil organic matter (SOM).
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scores in the northern part are SQI= 0.65, 0.61, and 0.66 for the
agricultural, grazing, and natural LUs, respectively. None of the three
LUs were found to be significantly different from each other
(χ2

(2)= 1.53, p= 0.46). Both the biological (representing the SOM and
NO3 soil properties) and the chemical components of the SQI for the
natural area differed significantly from the rest, with lower SOM and
NO3 components and higher values for the chemical properties. In the
central part, the mean overall SQI scores were SQI= 0.72, 0.65, and
0.63 for the agricultural area, grazing, and natural LUs, respectively,
with significant differences between all LUs for both overall SQIs and
their components (χ2

(2) = 15.67, p < 0.05). The remaining southern
part resulted in mean overall SQI scores of SQI = 0.61 and 0.59 for the
grazing and natural LUs, respectively, with no significant differences.
Within the southern SQI’s components, only the biological showed
significant differences.

3.3. Soil properties and SQI correlations with soil spectroscopy

The results of the PLS-R analysis are presented in Table 5. The re-
sults also include several latent variables (LV), coefficient of determi-
nation (R2), RMSEC, RMSECV, RPD, and significant VIP bands used for
each soil property included in the model. Soil properties with excellent
(RPD≥2.5 and R2 ≥ 0.80) and good (2 < RPD ≤ 2.5 and R2 ≥ 0.70)
prediction scores are marked in bold and underlined in Table 5 and
presented in Fig. 6, and include EC, Cl, Na, Ca+Mg, SAR, NO3, P, and

SOM. Fig. 6 also presents each soil property and SQI soil-laboratory
versus soil-spectroscopy regression scatterplots, including their re-
spective RMSEC, RMSECV, R2, LVs, and RPD values. The overall SQI
resulted in a good prediction value (R2= 0.903, RPD=2.46,
RMSEC=0.034, and RMSECV=0.057). The significant diagnostic
wavebands were calculated and identified by the VIP for each soil
property and SQI value. For example, significant scores for the highly
correlated soil salinity properties (EC, Cl, Na, Ca+Mg, and SAR) were
found within the range of bands with strong peaks at 1363, 1896–1899,
1982–1984, 2266–2270, and 2346 nm. Sensitivity bands for biological
properties, such as SOM, were found across the VIS-NIR-SWIR regions,
with significant peaks at 590–739, 853, 1364, 1899, 2014, 2203, and
2317 nm. For NO3–, the wavebands centered mostly within the SWIR
region, peaking at 652, 1361, 1420, 1773, 1901, 1974, and 2346 nm.
The SQI, combining attributes from multiple soil indicators, found
strong sensitivity at 1434, 1749, 1841, 1901, 1988, and 2343 nm.

3.4. Spectral classification of soil samples across LUs and sampling sites

The classification of the soil samples’ spectral signatures across
varied LUs and sampling sites is shown in Fig. 7, as well as the number
of LVs, overall accuracy, and Kappa coefficient values. The PLS-DA
classification across different LUs (Fig. 7A) resulted in high overall
accuracy and Kappa coefficient values for both grouping methods. The
separation between sampling sites (Fig. 7B) resulted in lower classifi-
cation values, with an overall accuracy of 0.823, and a Kappa value of
0.802. In terms of classification capabilities, the PLS-DA is an accurate
quantitative and qualitative approach for predicting variability be-
tween different LUs, and between sites to a slightly lesser extent.

4. Discussion

The effect of LU activity on soil was detected, quantified, and
evaluated through a soil survey and spectral analysis of different soil
indicators for comparing soil properties across different land practices.
This research integrated both methods by applying the NIRS method to
explain variations among LUs. The use of the NIRS approach for soil
quality assessment in an arid area, such as the Avdat region in the
Negev Desert, has been limited. Significant differences between LUs and
sampling sites were found for almost all soil indicators and SQIs, for
laboratory analyses, soil spectral measurements, and their integration
with NIRS. The correlation values between measured and predicted SQI
values was R2=0.903, RPD=2.46, RMSEC=0.034, and
RMSECV=0.057. Spectral classifications resulted in high accuracy
when segregating LUs, and with relatively lower values when

Table 3
A matrix presenting the measured soil quality properties and their respective Pearson correlation coefficients for the study area. Correlations with highly significant
differences of p≤ 0.05 are marked in bold, whereas strong correlations (R≥0.8) with very highly significant differences of p≤0.01 were marked with (*).

AWC (%) pH EC (dS/m) Cl (mg/l) Na (mg/l) Ca+Mg
(mg/l)

SAR NO3

(mg/kg)
P (mg/kg) K (mg/kg) SOM (%) Sand (%) Silt (%) Clay (%)

AWC (%) 1.00
pH 0.09 1.00
EC (dS/m) −0.20 −0.55 1.00
Cl (mg/l) −0.16 −0.55 0.99* 1.00
Na (mg/l) −0.23 −0.42 0.95* 0.94* 1.00
Ca+Mg (mg/l) −0.19 −0.56 0.93* 0.93* 0.86* 1.00
SAR 0.44 −0.14 0.14 0.14 0.11 0.04 1.00
NO3 (mg/kg) −0.09 −0.41 0.76 0.71 0.74 0.67 0.31 1.00
P (mg/kg) 0.29 −0.24 0.06 0.05 0.01 0.001 0.41 0.19 1.00
K) mg/kg) 0.12 −0.3 0.27 0.24 0.26 0.2 0.47 0.55 0.46 1.00
SOM (%) 0.42 −0.38 0.53 0.54 0.36 0.48 0.39 0.39 0.38 0.33 1.00
Sand (%) −0.02 −0.1 0.001 −0.02 0.02 −0.06 0.17 0.03 0.17 0.14 −0.06 1.00
Silt (%) 0.08 0.12 −0.05 −0.04 −0.13 0.01 −0.16 −0.13 −0.17 −0.16 −0.03 −0.88* 1.00
Clay (%) −0.12 −0.03 0.11 0.12 0.22 0.1 −0.02 0.18 −0.02 0.03 0.19 −0.34 −0.15 1.00

Note: AWC: available water content; EC: electric conductivity; Cl: chlorine; Na: sodium; Ca+Mg: calcium and magnesium; SAR: sodium adsorption ratio; NO3:
nitrate; P: phosphorus; K: potassium SOM: soil organic matter.

Table 4
Results of the principal component analysis (PCA) of soil in the study area.
Chosen principal components’ (PCs) scores for the model and their ranks are
marked bold.

Scores PC1 Scores PC2 Scores PC3

Eigenvalue 2.86 1.78 1.16
Variance (%) 35.83 22.29 14.58
Cumulative variance (%) 35.83 58.12 72.70
AWC (%) 0.06 0.55 0.42
pH 0.38 0.15 −0.23
EC (dS/m) −0.46 −0.34 0.17
SAR −0.19 0.41 −0.43
NO3 (mg/kg) −0.50 −0.18 −0.20
P (mg/kg) −0.25 0.51 −0.008
K) mg/kg) −0.39 0.20 −0.40
SOM (%) −0.34 0.16 0.57

Note: AWC: available water content; EC: electric conductivity; SAR: sodium
adsorption ratio; NO3: nitrate; P: phosphorus; K: potassium SOM: soil organic
matter.
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comparing sampling sites. These results demonstrate the high effec-
tiveness, predictability, and reliability of the NIRS model, even in such
poor arid soils.

4.1. Soil properties and the soil quality index

Assessment of soil quality was done through an understanding of
natural and anthropogenic processes that affect expected soil processes,
land use, and management practices, which are represented by a set of
multiple different soil properties. This measurement and analysis pro-
cess of multiple soil properties usually results in high costs and time

consumption. The SMAF protocols were used as a guideline for se-
lecting the soil indicators with adjustments that were applied to the
physical, biological, and chemical soil properties for developing a sta-
tistically modeled integrative SQI. This research sought to evaluate how
soil quality and properties are affected under varying LU and man-
agement practices. To achieve this goal, data underwent processing and
statistical methods, such as logistic transformations and PCA, to define
the correct indicators with which to build the appropriate soil quality
model. Since this study emphasized soil quality differences in an arid
area, the soil indicators were transformed using a scoring function, in
which the natural LU was set as a reference when comparing the other

Fig. 5. Scores of soil quality indices (SQIs) and their physical, biological, and chemical components for the three land uses, according to the study area’s geographical
distribution: north, center and south. Capital letters above the error bars represent significant differences between land uses.
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two anthropogenic LUs.
The SQI scores showed that in most cases, significant differences

were identified. When looking at the mean overall SQI scores, the
central agricultural LU was the only one to show significantly higher
values. This may imply better soil management of the central agro-
ecosystem sampling sites, for which the chemical components (in-
cluding soil salinity indicators and soil nutrients) had significantly
higher values, indicating low saline and well-fertilized soils. This
finding is well correlated with higher physical SQI component scores,
represented by AWC, indicating well-irrigated fields in the central part,
unlike the SQI scores for agriculture in the north that showed an op-
posite trend (Gupta and Huang, 2014). As expected in an arid area, the
AWC levels showed much lower scores in the natural LU in both the
central and southern parts, whereas the northern agriculture LU showed
relatively similar scores to those of the natural LU. This may indicate
poor irrigation in comparison to the central part. For the biological
properties represented by NO3

− and SOM, in all locations, the natural
LU displayed significantly lower scores due to low vegetation abun-
dance, fertilizers, and manure input to the soil and livestock activity
(Haynes and Naidu, 1998). The high scores of this component for the
grazing LU in all geographical units affirm the effects of herding, such
as grazing, trampling, urination, and feces, particularly on the levels of
pH (Smet and Ward, 2006), soil organic matter (Smet and Ward, 2009),
and nitrogen and phosphorus (Perkins and Thomas, 1993).

The results demonstrate that soil quality under different LUs can be
measured and distinguished when using an appropriate number of soil
indicators. On the one hand, the ability to calculate and produce a re-
liable and accurate tool for soil quality assessment constitutes the SQI
model’s significant advantage. On the other hand, the creation of such a
tool remains expensive, include extensive soil analyses, and although
accurate, it is still explanatory for the point-scale only. Therefore, the
correlation to spectral data was performed to reduce the dependence on
costly and prolonged soil sampling and laboratory analysis procedures.

4.2. Soil properties and SQI correlations with soil spectroscopy

The results showed that the model managed to predict most soil
properties accurately, as well as the SQI (Fig. 6B), when correlated
against their respective spectral measurements using PLS-R analysis. In
order to evaluate and compare each of the soil properties’ prediction
performance, the RPD was calculated. The successful prediction per-
formance scores were placed in “excellent” (RPD > 2.5), including EC,

Cl, Na, Ca+Mg and SAR, and “good” (2 < RPD<2.5) categories,
including NO3

−, P, and SOM. The prediction accuracy of each soil
property may vary under different locations, and environmental and
practical conditions, such as topography, soil composition, time of the
year, land and soil management, etc., as well as by sampling point
group sizes and numbers and heterogeneous representations of the
study area’s spatial variability. This can also be seen by the RMSEC and
RMSECV values for each soil property. For example, indicators with
high RPD scores, such as soil salinity properties (e.g., EC, Cl, Na,
Ca+Mg and SAR), also have smaller calibration and cross-validation
errors and prediction intervals than other properties, such as NO3

− and
P. In this study, higher R2 and RPD values are well correlated with
lower RMSEC and RMSECV values and present smaller prediction in-
tervals, which confirm the success of the prediction models. RMSEC
represents the error of the calibration model, and its error value is al-
ways smaller than the one of the RMSECV due to the larger number of
observations, which minimizes error sizes (Wise et al., 2006). Trends
can be seen in the PLS-R correlation plots in Fig. 6A. For example, as
mentioned in the previous section, soil salinity properties showed sig-
nificant differences in the agricultural LU between the northern and the
central parts. Higher values, which correspond to the under-treated
fields in the northern part, are distinct from the lower salinity levels in
the well-managed fields in the center. This corresponds to the higher
SQI scores shown in Fig. 6B. Similarly, SOM concentrations were sig-
nificantly higher under the agricultural and grazing LUs, whereas in the
natural soils, the spectral regression confirmed much lower levels. The
same is true for soil nutrients such as NO3 and P. The prediction of
overall SQI (Table 5, Fig. 6B) resulted in “good” performance values
(R2= 0.903, RPD=2.46, RMSEC=0.034, RMSECV=0.057). This
was made possible not only by each soil property’s contribution to the
model but also by the interaction between them all and the spectro-
scopy data under an integrative index approach.

The PLS-R analysis also generated the recognition of significant
sensitivity bands for soil properties. The detection of differences be-
tween LUs and sampling sites based on spectral-specific bands can be
attributed to chromophores. Chromophores are defined by their phy-
sical and chemical interactions with electromagnetic radiation, which
affect certain spectral regions, notably in the VIS-NIR (Muller, 1994),
although many elements in the soil show sensitivity in the SWIR region
as well (Ben Dor et al., 2015). Prevalent molecular bonds, such as CeH,
NeH, CeO, CeN, and OeH groups, create different chromophores
(Bushong et al., 2015; Fidêncio et al., 2002). Hence, they allow the

Table 5
Partial least squares-regression (PLS-R) analysis results for the Avdat region. The PLS-R distinguishes between the indicative spectral regions for each soil property.
For each soil property in the PLS-R model, the number of latent variables (LV), the coefficient of determination (R2), the root mean squares error of calibration and
cross-validation (RMSEC and RMSECV) of the predicted model, and the ratio of performance to deviation (RPD) are shown. Models with “excellent” (RPD≥2.5 and
R2 ≥ 0.80) and “good” (2 < RPD<2.5 and R2 ≥ 0.70) values are marked in bold. Variable importance in projection (VIP) presents the highly significant
wavelengths (nm) for each soil property with either excellent or good prediction value.

Soil properties LV R2 RPD RMSEC RMSECV VIP

AWC (%) 2 0.795 1.71 0.243 0.33
pH 3 0.976 1.58 0.053 0.231
EC (dS/m) 2 0.958 3.83 4.146 5.579 1363, 1898, 1982
Cl (mg/l) 2 0.960 3.66 50.987 70.82 1836, 1899, 1983
Na (mg/l) 3 0.949 2.88 25.709 45.299 672, 1363, 1896, 1984, 2346
Ca+Mg (mg/l) 2 0.951 3.22 22.351 31.644 1744, 1897, 2003
SAR 2 0.906 3.19 2.204 3.243 671, 1369, 1875, 2056, 2141, 2196, 2270, 2344
NO3 (mg/kg) 2 0.854 2.20 54.288 63.879 652, 1361, 1420, 1773, 1901, 1974, 2346
P (mg/kg) 2 0.866 2.19 10.864 16.352 450, 597, 1040, 1363, 1415, 1660, 1808, 1884, 1915, 2130, 2254, 2345
SOM (%) 4 0.905 2.14 0.338 0.581 590-739, 853, 1364, 1899, 2014, 2203, 2317
Sand (%) 5 0.882 1.53 3.383 7.053
Silt (%) 4 0.856 1.74 3.638 5.923
Clay (%) 2 0.915 1.49 1.409 3.518
Overall SQI 3 0.903 2.46 0.034 0.057 1434, 1749, 1841, 1901, 1988, 2343

Note: AWC: available water content; EC: electric conductivity; Cl: chlorine; Na: sodium; Ca+Mg: calcium and magnesium; SAR: sodium adsorption ratio; NO3:
nitrate; P: phosphorus; K: potassium SOM: soil organic matter; SQI: soil quality index.
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detection of a variety of soil properties, such as SOM, AWC, EC, pH, and
soil texture characteristics (Cécillon et al., 2009; Gholizadeh et al.,
2013; Marakkala Manage et al., 2018). The results of the highly sig-
nificant soil salinity indicators within the 1350–1450 nm,
1830–1990 nm, and 2200–2350 nm spectral ranges are attributed to the

presence of hygroscopic water and carbonate, which derives from the
predominant sandy-loam soil texture (Table 2) (Ben Dor et al., 2015).
Sensitivity bands for the biological properties, including SOM and NO3,

were generated by the model as well, in which SOM peak wavelengths
were found in several regions across the VIS-NIR-SWIR. For SOM, the

Fig. 6. Partial least squares-regression (PLS-R) correlation scatterplots of predicted cross-validation (CV) values versus soil laboratory analysis values for: (A) several
soil properties and (B) the soil quality index (SQI) among the three LUs in the Avdat region. RMSEC: root mean square error of calibration; RMSECV: root mean
square error of cross-validation; EC: electric conductivity; Cl: chlorine; Na: sodium; Ca+Mg: calcium and magnesium; SAR: sodium adsorption ratio; NO3: nitrate; P:
phosphorus; SOM: soil organic matter. Each colored shape represents a land-use type: natural ecosystem (blue triangles), agro-pastoral grazing (red squares) and
agriculture (green rhombuses).
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presence of organic matter (i.e., plant tissues, humus, manure, etc.) is
connected to the CeH bond and VIS-NIR absorption peaks at the wa-
velength range of 590–739 nm, and microbial activity and water re-
tained in the soil and in the organic matter itself generated the peaks at
1350–1450 nm and 2200–2350 nm, respectively (Ben-dor, 2017). Al-
though nitrogen is known for its lack of direct universal absorption
wavelengths (He et al., 2005), it can be measured by indirect absorption
of the soil features mentioned above. The model for NO3 found several
sensitivity bands, notably at 562, 1420, 1901, and 1974 nm, related to
water absorbed in the organic compounds, and at 1773 nm, which can
be related to free and/or structural iron content (Ben-Dor and Banin,
1995; Rinnan and Rinnan, 2007). The resultant bands for the SQI
prediction comprise the most dominant contributors to the model’s
variability and sensitivity. Hence, the strongest significances are at-
tributed to water absorption, organic matter, and carbonate abundance,
with their respective wavelengths previously mentioned. These results
strengthen the use of NIRS as a reliable, non-destructive, and time-ef-
ficient tool for soil quality analysis. Soil spectroscopy stands out as an
adequate and reliable approach for individual soil properties and the
multivariate evaluation of SQI. Thus, PLS-R is suitable as a time- and
cost-efficient method for analyzing a big dataset of soil samples under a
broad set of variables testing soil quality.

4.3. LU and sampling sites’ spectral classification

To test the capabilities of the spectral signatures’ classification in
the model, a partial least squares discriminant-analysis (PLS-DA) was
calculated for both different LUs and sampling sites. For the LU-based
classifications, both the overall accuracy and the Kappa coefficient had
an absolute value of 1. This indicates the success of the model to predict
and classify the data accurately. For the sampling site classification
(Fig. 7B), the performances were less accurate. Both the overall accu-
racy and the Kappa coefficient results were significantly lower than
those of the LU-based classification, resulting in more significant
spectral mixing among groups, possibly due to the smaller sampling
size. Hence, it could be concluded that the success of the classification is
affected by a set of influencing factors, including the spectral separ-
ability and variance between classes, the number of grouping classes,
the sample number, the spectral resolution, the noise-induced mistakes,
and the modification of raw spectral signatures using PPTs. The PPTs
transform and enhance the spectral separability between classes and
strengthen the grouping factor within each category, hence, improving
the classification accuracy of the model. In this study, the autoscale
transformation and GLSW were applied and resulted in the best se-
paration between classes, the smallest CV errors, and the highest clas-
sification accuracy.

5. Conclusions

In this study, we aimed to demonstrate the effects of LU activity,
represented by human-dominated LUs, on the natural landscape in an
arid environment, by evaluating and comparing their soil quality. This
goal was achieved by conducting a comparative analysis of both soil
laboratory surveys and reflectance spectroscopy of the VIS-NIR-SWIR
spectral regions. The ability to differentiate between physical, biolo-
gical, and chemical soil properties plays a major role in the SQI model
in recognizing and characterizing various soil processes in an in-
tegrative approach. The transformation scoring functions of soil attri-
butes, as an adjustment tool for SQI, is a key principle that makes the
SQI model suitable for monitoring the soil quality differences in soil
properties between different LUs. The addition of the spectral dimen-
sion into the analysis has proved the effectiveness of NIRS as a com-
prehensive, non-destructive, and time- and cost-efficient method for
monitoring and assessing soil quality and a variety of soil properties
based solely on spectral differences. Results back these claims, in which
the predicted SQI scores are well correlated with their calculated values
(R2= 0.903, RPD=2.46, RMSEC=0.034, RMSECV=0.057). Almost
all soil properties could be predicted with at least “moderate” perfor-
mance value, although only those with “good” and “excellent” scores
are likely to be used as model prediction accuracy representatives. The
implementation of advanced mathematical and statistical methods,
such as linear parametric transformations, PCA, PLS-R, and PLS-DA,
helps to solve the challenges linked to the multi-dimensional and high-
collinearity of some variables in the analysis process. This advantage is
reflected in the significant improvement of the results, demonstrating
the soil property and SQI prediction accuracy. However, despite its
excellent performance, the model is spatially limited to a site-specific
point scale. To provide a complete accurate assessment of an entire
region’s soil quality, upscaling of the spectral resolution would be ne-
cessary in future research. This would enable the SQI to be mapped at
any given location, which would deepen the understanding of soil
functions’ spatial trends and improve land management sustainability
and conservation in the future.
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Fig. 7. Partial least squares-dis-
criminant analysis (PLS-DA) classifica-
tion of initial 2150 bands spectral re-
solution laboratory spectroscopy for
both (A) LUs and (B) sampling sites in
the Avdat region. Each figure includes
the number of latent variables (LV)
used, overall accuracy (Acc), and Kappa
coefficient (Kc) values for each model.
Colored circles indicate a 95% con-
fidence level. Full names and number of
soil samples for all sampling sites are
presented in Table 1.
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Appendix A

See Fig. A1.

Appendix B. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.still.2020.104571.
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