
ww.sciencedirect.com

b i o s y s t em s e n g i n e e r i n g 2 1 7 ( 2 0 2 2 ) 2 6e4 0
Available online at w
ScienceDirect

journal homepage: www.elsevier .com/locate/ issn/15375110
Research Paper
Spectral monitoring of salinity stress in tomato
plants
Timea Ignat, Yoav Shavit, Shimon Rachmilevitch, Arnon Karnieli*

French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert

Research, Ben-Gurion University of the Negev, Israel
a r t i c l e i n f o

Article history:

Received 18 August 2021

Received in revised form

11 February 2022

Accepted 27 February 2022

Keywords:

non-invasive

machine learning

spectroscopy

Solanum lycopersicum L.

vegetation stress
* Corresponding author. Jacob Blaustein Inst
Israel.

E-mail address: karnieli@bgu.ac.il (A. Kar
https://doi.org/10.1016/j.biosystemseng.2022
1537-5110/© 2022 IAgrE. Published by Elsevie
Water salinity is a widespread agricultural hazard that affects approximately 20% of irri-

gated land, causing a significant yield reduction in crops. Stress coping mechanisms by

plants were thoroughly examined but understanding of plant adaptation and acclimation

is still lacking and is often species- and variety-specific. Presently, the biochemical and

physiological methods that are used to assess plant stress are costly, destructive, and time-

consuming. Alternatively, spectroscopy is a potential method to monitor biochemical

components and physiological states of plants. The objective of the current work was to

build a spectral-based model for detecting plants under salt stress, in order to optimise

plant-status monitoring in a non-destructive manner. In this study, five different tomato

graft combinations were examined under four different salinity treatments in a green-

house. Hyperspectral measurements were conducted in the range of 400e2500 nm, and

chemometrics was used for data analysis and modelling. Salt treatments were found to

affect the physiological performance of plants, although environmental conditions had a

greater influence on plant temporal physiological trends. Spectral data acquisition with

chemometrics showed high ability to predict salt accumulation in plants (root mean square

error of prediction (RMSEP) of 0.47 mg g�1 and 2.8 mg g�1 for Naþ and Cl�, respectively).

Moreover, a hyperspectral, robust decision-supporting classification model was estab-

lished for detecting plants under salt stress (prediction specificity: 0.94). The presented

capabilities of predicting Cl�, Naþ, and the K:Na ratio in a non-destructive manner, by

utilising spectroscopy, could serve as the basis for developing a low-cost, fast, and efficient

stress detection method, independent of environmental conditions.

© 2022 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Plant stress can be described as an external biotic or abiotic

suppressor that limits photosynthesis. The major abiotic
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stresses, such as high salinity, drought, cold, and heat, nega-

tively influence the survival, biomass production, and yield of

staple food crops by up to 70% (Vorasoot et al., 2003; Kaur et al.,

2008; Ahmad et al., 2010; Thakur et al., 2010; Mantri et al.,

2012). Soil and irrigation water salinity are a widespread
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agricultural hazard that affects approximately 20% of irrigated

land, causing a significant crop yield reduction (Qadir et al.,

2014). Water and soil salinisation tend to be common in arid

and semi-arid regions, where salt leaching is inadequate due

to low rainfall (Pitman & L€auchli, 2006).

Plant adaptation to environments with excessive salt con-

centrations occurs due to the activation of physiological and

biochemical coping mechanisms, leading to the most efficient

ion and water homeostasis regulations (Hasegawa et al., 2000).

These mechanisms include regulations over plant growth

rates (Maggio et al., 2002), ion compartmentation (Niu et al.,

1995; Zhu, 2002), and osmotic adjustments (Morgan, 1984;

Yancey, 2004). Even though these mechanisms have been

thoroughly examined and characterised, the understanding of

plant adaptation over multiple generations and dynamic

acclimation processes, involving physiological, anatomical

and morphological adjustments, is still lacking, and the

knowledge that does exist is usually species-specific or even

variety-specific. In sum, plant adaptations to stress and root-

zone salinity affect crop yield (Hasegawa et al., 2000; Hsiao,

1973). Therefore, there is a worldwide demand for agro-

techniques and breeding solutions to enhance crop produc-

tivity under environmental stress. One approach in meeting

the current environmental challenges is to develop abiotic-

stress-tolerant crops using breeding methods. A different

approach is the use of grafting technique, which has been

gaining popularity worldwide (Aidoo et al., 2018; Kubota et al.,

2008; Lee et al., 2010; Lee & Oda, 2003). Additionally, due to the

limited availability of arable land and the highmarket demand

for vegetables around the world, crop production is expanding

into areas with less favourable soil and environmental condi-

tions that constitute the most limiting conditions for agricul-

tural productivity worldwide (Schwarz et al., 2010).

The consistent reductions in the physiological variables'
performances, such as leaf water content, stomatal conduc-

tance, and photosynthesis, are the results of the two-phase

growth (phase 1: osmotic stress, phase 2: salt-specific effect)

response to excessive salinity described by Munns (2005).

Once salt stress is applied, there is a reduction in plants’

ability to take up water, which leads to stomatal closure and

photosynthetic inhibition, a phase also known as the osmotic

effect. Salts taken up by the roots into the plant concentrate in

old leaves and continue moving into transpiring leaves. Shoot

salt partitioning in old leaves was suggested to be a salt-

tolerance mechanism that protects the younger, most active

leaves (Di Gioia et al., 2013).

Elevated Naþ levels in the root medium reduce nutrient

assimilation, mainly of Kþ, Ca2þ (Zhu, 2001), and Mg2þ. The Kþ

uptake disturbance by Naþ damages stomatal regulation and

ultimately causes water loss through the stomata. On the

other hand, Cl� is seen by some as a more toxic ion when

reaching high levels, causing a reduction in chlorophyll pro-

duction that results in a non-stomatal photosynthetic capac-

ity loss (Tavakkoli et al., 2011). In tomato, salinity reduces leaf

Kþ, Ca2þ, and Mg2þ concentrations. Plants that take up more

Kþ, Ca2þ, and Mg2þ from the medium are considered to be

better adapted or acclimated (Cuartero et al., 1992; P�erez-

Alfocea et al., 1996).

Tomato (Solanum lycopersicum L.) is one of theworld'smajor

fresh and processed fruits and is the second most important
agricultural vegetable after potato (FAOSTAT, 2018). Tomato

production, with the highest global yields, is concentrated in a

fewwarm, arid, and semi-arid regions. Over 30% of worldwide

production is located in countries surrounding the Mediter-

ranean Sea and approximately 20% in California (FAOSTAT,

2018). Tomato is a moderately salt-tolerant plant that can

attain a yield within an electrical conductivity (EC) range of

1.3e6 dS m�1 and is typically cultivated in salinisation-

exposed environments (Cuartero & Fern�andez-Mu~noz, 1998).

The response of tomato to salinity has been documented and

still constitutes an ongoing research topic (Esta~n et al., 2005).

Excess soil and water salinity in tomato production causes

several effects, such as root biomass decrease (Papadopoulos

& Rendig, 1983), delay in seed germination, inhibited plant

growth, and yield reduction (Dalton et al., 2001; Romero-

Aranda et al., 2002). Inhibition of tomato leaf growth in sali-

nised soils was found to correlate with a reduction in cellular

turgor and photosynthetic activity (Munns, 2002). Tomatoes,

like other spring-summer crops of Mediterranean zones, are

usually affected not only by the high salt concentration in the

root-zone but also by additional environmental factors, such

as high temperatures and low relative humidity, that may

have an additive effect on the growth and yield inhibition

(Johnson et al., 1992). Previous studies demonstrated a

reduction of 10% in fruit weight resulting from irrigationwater

with EC of 5e6 dS m�1, and a reduction of 30% under an

8 dS m�1 EC salt treatment. Low yield was also attributed to

salinity's effect on the plants' reproductive organs, causing

flowering inhibition, a reduced number of fruits per plant, and

a decrease in pollen viability (Grunberg et al., 1995).

The most prevalent current methods used to assess

instantaneous plant stress states are physiological or labora-

tory measurements, although often, they may be costly,

destructive, and time-consuming. An alternative rapidly

developing method for plant stress detection is spectroscopy,

which is based on light energy absorption. Within the visible

wavelength range (VIS, 400e700 nm), the major absorbers are

pigments, while water, carbohydrates, fats, and proteins have

absorption bands in the near and shortwave infrared (NIR,

750e1000 nm; SWIR, 1000e2500 nm, respectively) regions. In

general, the VIS-, NIR-, and SWIR spectral signatures vary for

species, and they depend on leaf maturity, physiological state

(due to differences in pigment levels), moistness, air content,

and anatomical arrangements of leaf cells (in particular

mesophyll cells), among other factors (Gausman, 1984).

Hyperspectral measurements in the range of 350e2500 nm

have proven, in the last decade, to potentially be an effective

tool in the field of precision agriculture, either by proximal or

remote estimation of biochemical variables in plants (Cochavi

et al., 2017; Hern�andez et al., 2014; Rapaport et al., 2015;

Herrmann et al., 2020). In order to establish an effective

spectral detection tool, preliminary knowledge is needed,

based on high spectral resolution spectrometers and machine

learning algorithms. This learning and calibration process can

be time consuming and costly, but may provide information

that is collected non-destructively and is linked to plant

biochemistry and physiology based on specific bands (Das

et al., 2020; El-Hendawy et al., 2019). This knowledge can be

used to develop low-cost, remote, soft sensor applications for

prediction of vegetation's internal components and stress
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level (Brunner et al., 2021). Several studies have been con-

ducted linking spectral signature with biochemical and

physiological changes. Concerning stress, Rapaport et al.

(2015) showed that in grapevines, combining the spectral re-

sponses in the VIS (531 nm) and SWIR (1500 nm) regions

yielded a superior ability to predict physiological values at

both the leaf and the canopy levels. These models using the

novel water balance index also demonstrated applicability for

water status monitoring and irrigation scheduling under field

conditions. Moreover, Rapaport et al. (2015) found a significant

correlation between plant spectral and physiological proper-

ties, such as leaf water potential, stomatal conductance, and

non-photochemical quenching, indicating the predictive po-

tential of physiological characteristics in a non-destructive

manner. In a salt stress experiment conducted in eggplant,

Leone et al. (2007) demonstrated, by spectral measurement in

the range of VIS-NIR, the predictive potential for soil proper-

ties (pH and EC). Significant relationships were obtained be-

tween plant characteristics, such as biomass, leaf area index,

and water and chlorophyll contents, and vegetation indices.

Increasing ion concentrations in saline-stressed wheat and

sugarcane were monitored in the works of Steidle Neto et al.

(2017) and El-Hendawy et al. (2019) using hyperspectral mea-

surements. In melon plants throughout the spectral range of

VIS-NIR, Hern�andez et al. (2014) demonstrated that the nor-

malised difference vegetation index (NDVI750-705, based on 705

and 750 nm) and the ratio between the water index (WI, based

on 900 and 970 nm) and the normalised difference vegetation

index (WI:NDVI750-705) showed significant relationships

(p < 0.01) with salinity. Hyperspectral measurements have

demonstrated potential to monitor and predict the physio-

logical state of plants under stress (Rapaport et al., 2015;

Rodrı́guez-P�erez et al., 2007; Serrano et al., 2010) in a non-

destructive manner. Nonetheless, studies about improved

stress detection analysis and modelling are still required due

to the different spectral signatures yielded by different species

and stress agents (Carter & Knapp, 2001). Established predic-

tion models for stress detection can potentially be applied in

large-scale precision agriculture by spectroscopic methods.

Most studies mentioned above have been conducted at a

single time point or in a relatively short time period. In these

timeframes and under controlled environmental conditions,

physiological measurements have been found to describe well

the stressed plant's status. In case of longer-term cultivation,

together with continuous plant stress and under varying

environmental conditions, physiological measurements tend

to be mainly linked to the plant's temporal state and lack the

ability to reflect the plants stress status. The present study

addresses the complexity of plants coping with saline stress,

along with varying environmental conditions, and demon-

strates the hyperspectral measurement technique's ability to

reliably determine vegetation salinity stress under such

conditions.

The objectives of the presentworkwere to evaluate the salt

stress effects on the physiology and biochemical variables of

tomato plants and to study the ability of hyperspectral mea-

surements to predict plant stress caused by salinity. Further-

more, it aimed to establish an environment-independent

chemometric model for a decision support system to predict

saline stress levels in tomato plants.
2. Materials and methods

The study experiments took place at Ben-Gurion University of

the Negev's Sede Boqer Campus. The study site (30�51014.2100N,

34�4701.300E) is located in a tomato-growing region in Israel's
Negev Desert with an annual rainfall average of 80 mm. The

annual mean temperature is 18 �C, and the average relative

humidity at 14:00 is between 20 and 30%. Two experiments

were conducted inside a nearly commercial-size (50 � 70 m)

net-house with a polyethylene cover, with 50-mesh net on the

sides to prevent pest penetration, and without an active

environmental control system. The first experiment was

conducted between March 26 and June 18, 2018 while the

second experiment through January 13 to March 3, 2020. The

durations of the first and second experiments were 82 and 50

days, respectively.

2.1. Plant materials

In the first experiment, four different tomato (S. lycopersicum

L.) varieties were used in different grafting combinations.

Varieties were chosen based on commercial use and salinity

tolerance. The Ikram cluster-tomato (Syngenta Seeds, Milan,

Italy) cultivar was solely used as a scion in the experiment

due to its wide commercial usage. Additionally, Ikram is

known as a vigorous cultivar with a high yield, long shelf life,

and resistance to Fusarium Wilt, Verticillium Wilt, and To-

bacco Mosaic Virus. The rootstock varieties were as follows:

(1) Beaufort (De Ruiter Seeds, Netherlands), the most com-

mon tomato rootstock worldwide with vigorous growth ca-

pabilities; (2) Resistar (Hazera Seeds Ltd., Israel), a

commercial rootstock that has been shown to have increased

yield at low salinity levels (Savvas et al., 2011); (3) TRS-2

(TomaTech Ltd., Israel), a non-commercial, experimental

variety; and (4) Ikram. In the second experiment, for the

chemometric model validation, the Shiran cultivar was used

as rootstock. Plant materials were supplied by Hishtil Nurs-

eries (Ashkelon, Israel).

2.2. Experimental setup

Seedlings were planted in 24 L volume bucket-shaped pots

embedded with rock wool. Plant containers were filled with

sand, the predominant soil type in the region for tomato

cultivation. Irrigation was controlled by an irrigation com-

puter, enabling 15-min cycles, through a 2 L h�1 dripper

(Netafim, Israel). Each plant had three drippers and four irri-

gation cycles were taking place per day throughout the ex-

periments. A RollerHook Tomato Vine Crop Trellis was used to

support the plants. Due to the sand's physical nature, perco-

lation and drainage were rapid, necessitating excess irriga-

tion, reaching 6 L of water per day per plant. Fertilisation was

performed with each irrigation cycle, providing macronutri-

ents (NePeK (17%-10%-27%), NeNO3 (11.3%) and P2O2 (10%))

and micronutrients (29%) (Poly Feed; Haifa Chemicals, Israel).

A fertiliser pump (Tefen, Israel) supplied irrigation water with

a fixed 0.2% of fertiliser, reaching a final macro- and micro-

nutrients concentration ratio of 500 mg L�1. Saline solution

was prepared in an 80 L tank with 125,000 mg L�1 NaCl

https://doi.org/10.1016/j.biosystemseng.2022.02.018
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concentration. The NaCl solution was pumped from the tank

to irrigation pipes by three adjustable hydraulic pumps (0.4%e

4%), one for each saline treatment. The electrical conductivity

of the irrigation water emerging from the drippers was

measured once a week for all treatments using a field EC

meter (WTW GmbH and Co., Germany) that was calibrated

with the Lab Con 510 EC m (Eutech Instruments, Nijkerk,

Netherlands). Drinking water was used for irrigation. The pH

of the irrigation water applied after adding macro- and

micronutrients, was 6.7.

In both experiments, the non-destructive physiological

and hyperspectral measurements were first completed on the

youngest fully mature leaf and a basal leaf while the leaves

were still attached to the plants. They were followed by the

destructive laboratory measurement sampling by harvesting

the same leaves. Seedlings were planted at the age of 14 days

and were cultivated with control (EC 1.2 dS m�1) irrigation for

up to 22 days when the treatments began.

The first experiment contained four replicates of the four

different salinity treatments with mean values of EC equal to

1.2 (control, without added NaCl), 3, 6, and 9 dS m�1. An open-

loop cultivation system was used in which leachate was dis-

charged to the ground. Environmental conditions were

recorded using a relative humidity and temperature sensor

(DHT22 - AM2302, Guangzhou Aosong Electronic Co., Ltd.,

China) located at the height of the trellising cable between the

rows in order to accurately represent the conditions sensed by

the plants. The temperature and relative humidity data were

recorded every minute. Measurements started six days after

treatment (DAT) and ended 62 DAT. Altogether, 80 plantswere

monitored in bi-weekly, alternatingmanner. Plants 1e40were

measured and sampled on the odd weeks, while plants 41e80

on the even weeks. On each plant the youngest fully mature

leaf and one basal leaf were sampled.

During the second experiment, the growth conditionswere

similar to the first experiment, and the applied salinity treat-

ments were EC 3 dS m�1 and EC 9 dS m�1. The measurements

were only taken at the end of the experiment on 28 DAT. The

youngest fully mature leaf and the basal leaf of 12 plants were

scanned in the same manner as in the first experiment. Since

Cl� is feasible to quantify and it represents well the salinity

stress in plants; therefore, the second experiment was only

used for validating the chemometric model for Cl� accumu-

lation in the plants.

2.3. Leaf physiological performance

A LICOR 6400 portable photosynthesis system (LICOR, Lincoln,

NE, USA) was used for measuring stomatal conductance (gs;

mol H2O m�2 s�1), leaf transpiration rate (E; H2O m�2 s�1), ef-

ficiency of photosystem II (PhiPS2), leaf vapor pressure deficit

in the leaf vicinity (VPDleaf), and photosynthetic carbon net

assimilation (PN; mmol CO2m
�2 s�1). The variable settingswere

as follows: a concentration of 400 mmol mol�1 was set in the

reference cell; the molar flow rate of air entering the leaf

chamberwas set to 500 mmol s�1; cell temperaturewas fixed at

25 �C; photosynthetically active radiation (PAR; mmol s�1 m�2)

was fixed at environment photosynthetically active radiation
during measurements, approximately 900 mmol s�1 m�2, with

10% of blue light; and the stomatal ratio was set to 0.2. From 6

to 62 DAT, physiological data acquisition occurred on aweekly

basis.

2.4. Chemical analysis

In order to examine the rootstocks' abilities to include or

exclude toxic ions, leaf chloride concentration measurements

and inductively coupled plasma (ICP) assays were conducted.

Aiming at preparing samples for Cl� concentration mea-

surements and ICP, the dried leaflets were separated from

their petioles and primary rachis, and were ground and

homogenised using stainless steel milling balls in a Mixer Mill

MM 400 (Retsch, Haan, Germany) set for 1 min at 22 Hz. The

ground samples were weighed on a Sartorius CP225D analyt-

ical scale (Sartorius, Goettingen, Germany) with five-digit ac-

curacy and distributed to each assay according to the

protocols.

For chloride concentration assessment, samples were

weighed (~0.1 g) into 15-mL corning tubes, and 10 mL of

double-distilled water (DDW) was added to each tube. Sam-

ples were placed on an MRC TOS-4030FD shaker (MRC Lab,

Germany) for 12 h, operating with 140 spins per minute.

Samples were filtered through a Whatman-40 filter paper

(Whatman International Ltd., Maidstone, England). Chloride

concentration was determined from 0.5 mL of filtrate by a

chloride analyser (Chloride Analyser mod. 926, Sherwood

Scientific Ltd., Cambridge, UK). Chloride concentration was

expressed in mg g�1.

The elemental analysis was done by ICP analytical tech-

nique. Sample preparation followed the accelerated wet

digestion protocol of Campbell and Plank (1998), and the

samples were analysed at an external laboratory using a

Varian 720-ES inductively coupled plasma optic emission

spectrometer (Varian Inc., Palo Alto, CA, USA). Since the

preparation process was time-consuming and costly, the ICP

assay was performed on 73 samples, on the youngest fully

mature leaves and the basal leaves at 27 DAT.

2.5. Hyperspectral leaf reflectance

Leaf reflectancewas obtained by an Analytical Spectral Device

(ASD) spectroradiometer FieldSpec Pro FR (Analytical Spectral

Devices, Inc., Boulder, CO, USA). The system was set to mea-

sure the reflectance mode in the 350e2500 nm range, at a 1-

nm spectral sampling rate with a spectral resolution of 3 nm

at 350e1000 nm and 10 nm at 1001e2500 nm. As a reference, a

Spectralon diffuse reflectance standard target (99%) (Lab-

sphere, North Sutton, NH 03260 US) was used, and measure-

ments were obtained on a regular basis after every fifth scan.

The reflectance target was measured after being attuned to

the environmental conditions. Leaf spectral measurements

(average of five scans) were acquired by a plant probe with an

internal light source together with a leaf clip (Analytical

Spectral Devices, Inc., Boulder, CO, USA). The light direction

was perpendicular on the leaf, and the reflectance signal was

collected in 45� by the fibre optic. The warm-up time was

https://doi.org/10.1016/j.biosystemseng.2022.02.018
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40 min prior to the measurements for the spectrophotometer

and light source alike.

Spectral measurements were performed on a young fully

mature leaf and a basal leaf once a week at mid-day. In order

to eliminate local spectral variance, each leaf was sampled on

three different compound leaflets, avoiding the terminal

leaflet. To enhance the spectral signature differences, pre-

processing was applied based on SavitzkyeGolay's (Savitzky

& Golay, 1964) method: second derivative, window size: 7

and polynomial order: 2 (D2R).

2.6. Chemometrics

A statistical analysis to examine differentiating between

treatments was performed using R Statistical Software

(version 3.4.3; R Foundation for Statistical Computing, Vienna,

Austria). The Levene's test for homogeneity of variance and

the ShapiroeWilk test for normal distribution of residuals

were performed. Comparisons of means for all treatments

were performed using the Tukey-HSD multi-comparison test.

Statistical significance between treatments was distinguished

by lower-case letters based on confidence intervals (p ¼ 0.05).

The partial least squares-regression (PLS-R) and the partial

least squares-discriminant analysis (PLS-DA) models were

performed using the PLS toolbox (PLS, Eigenvector Research,

Wenatchee, WA, USA) and were run under MATLAB 2019b

software (MathWorks, Natick, MA, USA). Regression models

were formulated to link the spectral information to the in-

ternal components. The error associated with the regression

model's results were defined by the root mean square error of

calibration (RMSEC):

RMSEC¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1

� byi � yi

�2
n

s
[1]

where byi is the predicted value of the internal component of

sample i, yi is the value of internal component of sample i, and

n is the number of calibration samples. RMSEC is a measure of

how well the model fits the data.

Root mean square error of cross-validation/prediction

(RMSECV/RMSEP) is a measure of a model's ability to predict

new samples. The RMSECV/RMSEP is defined as in Eq. (1),

except that byi are predictions for samples not included in the

calibration model. RMSECV used data from cross-validation,

while RMSEP used data from the independent validation

dataset. RMSE is expressed in the unit of the related internal

components or physiological measure. Cross-validation was

performed by using Venetian blinds, random data split (ten

data split). During the machine learning process in the first

experiment the dataset (n) in each case was randomly divided

into two groups: 70% for model building (calibration (Cal) and

cross-validation (CV)) and 30% for external validation (Pred).

The data from the second experiment was used for model

validation.

The statistical measure of the performance of the PLS-DA

classification were sensitivity and specificity. Sensitivity is a

measure of how often the test correctly identifies a positive

among all positives (Eq. (2)), while specificity (Eq. (3)) is a
measure of how accurate a test is against false positives.

Specificity can be considered as the percentage of the times a

test correctly identifies a negative result. For the PLS-DA, the

dataset was divided in the same manner as for the PLS-R.

Sensitivity¼ true positives
ðtrue positiveþ false negativeÞ (2)

Specificity¼ true negatives
ðtrue negativeþ false positivesÞ (3)

The machine learning procedure using PLS-R was as fol-

lows: the regression model was built on one particular DAT

measurement, followed by model adaptation for an extended

dataset of different DATs and leaf locations on plants. Itmeans

that the learning procedure started on the youngest fully

mature leaves for a particular DAT in order to learn how the

chemical compound change in the leaves is reflected on the

spectral signature. This process included wavelength range

selection for each chemical compound in order to achieve the

models’ highest prediction ability. The wavelength selection

was done in an iteration manner during the PLS-R regression

process. The next step in the learning procedure was to extend

the existing PLS-R model with data from different DAT and

further on with leaves that are different in age. The last step of

the procedure was to validate the models with samples that

were not taking part in the model building process.

3. Results

The detailed results are shown for the first experiment. Re-

sults that are related to the second experiment are specifically

noted.

3.1. Meteorological measurements

Throughout the experiment, the highest and lowestmeasured

temperatures were 46.7 �C on May 18, 2018 (31 DAT) and

10.6 �C on April 22, 2018 (5 DAT). During the last week of April

(7e13 DAT) and the first two weeks of May (14e27 DAT), the

temperature maintained an oscillating rhythmwith relatively

large differences between high and low temperature values.

From mid-May (28 DAT), the oscillation rhythm diminished

(Fig. 1a), and its effect could be seen very distinctly in the

gradually increasing and decreasing values of PhiPS2.

Due to the microclimate conditions formed in the net-

house environment, the relative humidity in most nights

reached amaximum of 100% and aminimumof 12.1% onMay

18, 2018 (31 DAT) during the day. The oscillation rhythm of the

relative humidity minimum values during the day was stable

throughout the experiment, reaching low values in the

beginning of May to mid-May and the beginning of June

(Fig. 1b). Low humidity values occurred on April 30, 2018 (13

DAT) and May 23, 2018 (36 DAT).

Similar to temperature, the vapor pressure deficit of the air

(VPDair) (Fig. 1c) maintained a high oscillation rhythm up until

mid-May (28 DAT) and was more stable from that point until

the end of the experiment.
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Fig. 1 e Net-house environment temperature (a), relative humidity (b), and vapor-pressure deficit (air) (c) values attained

during the measurement campaigns with 10-min resolution.
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3.2. Physiological performance

Stomatal conductance (gs) (Fig. 2a) values measured in

leaves showed decreases of 13, 47, and 56% between the

control and the EC 3, EC 6, and EC 9 treatments, respec-

tively, for the youngest fully mature leaves 37 DAT.

Decreasing gs differences were found between the youngest

fully mature leaves and the old leaves towards the end of

the experiment, especially under the mild salt treatments

(i.e., control and EC 3). The VPDair peaks (Fig. 1c) that

appeared at high temperatures and low relative humidity

correlated well with gs (Fig. 3) and resulted in decreasing

photosynthetic activity.

Similarly to gs, the photosynthetic rate (PN) (Fig. 2b) de-

creases due to salt stress observed from 6 DAT, and significant

differences were first seen 27 DAT. Differences of 17, 34, and

40% were noticed between the PN of the control and the EC 3,

EC 6, and EC 9 treatments, respectively, 37 DAT. On several

measurement campaign dates, EC-3-treated plants demon-

strated PN that was equal to or higher than the control
treatment. These results suggest that low salt concentrations,

such as 3 dS m�1, may not cause noticeable physiological

differences. The PN ratio of the youngest fully mature leaves

and the basal leaves increased throughout the experiment.

Through the course of the experiment, the transpiration

rate (E) (Fig. 2c) demonstrated similar behaviour to gs, showing

a trend of decrease of 7, 32, and 38% between the control and

the EC 3, EC 6, and EC 9 treatments, respectively, for the

youngest fully mature leaves 37 DAT. Although very similar in

their trends, 37 DAT, E showed a high rate of activity, while

stomatal conductance decreased.

Measured VPDleaf reached its highest values on hot days

when the temperature reached 41.2 �C. Results showed an

increasing trend of VPDleaf as the NaCl concentration

increased in the irrigation. VPDleaf was shown to be linked to

VPDair measured in the net-house (Fig. 1c), demonstrating

significant changes between treatments on days with high

temperatures and low relative humidity. Regarding leaf posi-

tion, bottom leaves demonstrated higher VPDleaf than the

youngest fully mature leaves.
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Fig. 2 e Stomatal conductance (a), photosynthetic rate (b),

and transpiration rate (c) results in tomato plants under

salt stress treatments (control, EC3, EC6, and EC9) (n¼ 543).

Graphs are divided by measurement dates and present the

youngest fully mature leaves and the basal leaves.

Averages are shown with error bars of the confidence

interval (p ≤ 0.05). Letters represent significant differences

between the youngest fully mature leaves and the basal

leaves separately for the different treatments on the same

DAT.

Fig. 3 e Changes in average stomatal conductance for the

youngest fully mature leaf (n ¼ 90) and leaf vapour

pressure deficit on the day of sampling in the function of

DAT for tomato plants under control, EC 3, EC 6, and EC 9

treatments.
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Photosystem II efficiency (PhiPS2) generally increased for

the control, EC 3, and EC 6 throughout the experiment until 48

DAT. PhiPS2 for the EC 9 treatment did not show any signifi-

cant change after 13 DAT. The average PhiPS2 difference be-

tween the youngest fully mature leaves and the basal leaves

increased throughout the experiment.
3.3. Internal content analysis

Chloride concentration in both the youngest fully mature

leaves and the basal leaves increased throughout the experi-

ments (Fig. 4). In the first experiment (Fig. 4a), the older leaves

continued accumulating Cl� and did not reach saturation,

while the youngest fully mature leaves maintained a similar

trend but had lower chloride concentrations. Chloride differ-

ences became significant between treatments as the DAT

progressed. In the second experiment (Fig. 4b), the plants

showed similar Cl� accumulation rates and differences be-

tween EC 3 and EC 9 in the upper and basal leaves as in the first

experiment. Similarly to chloride, the sodium concentration

in the leaves (Fig. 5) demonstrated significant differences be-

tween all treatments for the youngest fully mature leaves.

Significant differences were also seen between the Naþ con-

centrations of the control and EC 3 and between EC 3 and EC 6

and EC 9 for the older leaves.

The ratio of Kþ to Naþ significantly decreased between all

treatments for the youngest fully mature leaves (Fig. 6). The

significance of the ratio was also demonstrated for the old

leaves between the control and EC 3, EC 6, and between EC 3

and EC 6 and EC 9.

Sodium was found to be in an exponential positive corre-

lation with chloride content in leaves. Treatments with a

reduced concentration of NaCl (i.e., control and EC 3)

demonstrated distinct accumulations of Cl�, while the Naþ

accumulation was negligible. The exponential correlation

yielded 0.72, 0.59, 0.76, and 0.41 coefficients of determination

for the EC 9, EC 6, EC 3, and control treatments, respectively.

The accumulation rate of Naþ and Cl� accelerated as higher

salinity treatments were applied (Fig. 7).

3.4. Spectral data analysis

Average of the relative reflectance spectra of the youngest

fully mature leaves and the basal leaves are presented for the

first (Fig. 8 a-d) and second (Fig. 8 e-h) experiments. The pre-

sented spectral signatures are an average of all measurements

https://doi.org/10.1016/j.biosystemseng.2022.02.018
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Fig. 4 e Cl¡ concentration in tomato plants under salt

stress treatments. The first experiment (n ¼ 154) (a) shows

control, EC3, EC6, and EC9 treatments by DAT, and the

second experiment (n ¼ 24) (b) depicts EC 3 and EC 9

treatments at 28 DAT for the youngest fully mature leaves

and basal leaves. Averages are shown with error bars of

the confidence interval (p ≤ 0.05). Letters represent

significant differences between the youngest fully mature

leaves and the basal leaves separately for the different

treatments on the same DAT.

Fig. 5 e Naþ concentration in tomato plants under salt

stress treatments (control, EC3, EC6, and EC9) on 27 DAT for

the youngest fully mature leaves and basal leaves' location
(n ¼ 73). Averages are shown with error bars of the

confidence interval (p ≤ 0.05). Letters represent significant

differences between the youngest fully mature leaves and

the basal leaves separately for the different treatments.

Fig. 6 e The Kþ to Naþ ratio in tomato plants under salt

stress treatments (control, EC3, EC6, and EC9) on 27 DAT for

the youngest fully mature leaves and the basal leaves

(n ¼ 73). Averages are shown with error bars of the

confidence interval (p ≤ 0.05). Letters represent significant

differences between the youngest fully mature leaves and

the basal leaves separately for the different treatments.
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taken throughout the experiment for the salt treatments.

Reflectance curves of treatments for the youngest fully

mature leaves are well separated (Fig. 8b, f) by an increase in

the NIR reflectance as a function of the increasing salt

concentrations.

in the irrigation water. In the visible spectrum, leaves

under the control treatment demonstrated a higher spectral

reflectance increase at 530e550 nm compared to the other

treatments. The average relative reflectance from 600 to

700 nm was higher but not significant for the EC 6 and EC 9

than for themoderate salt treatments (control and EC 3). Basal

leaves in the first experiment (Fig. 8d) under the control

treatment showed slightly higher reflectance than all other

treatments from 990 to 1120 nm, while this trend could not be

observed in the second experiment.

To enhance the spectral signature differences and in order

to find the highest variance in the spectra, several pre-

processing methods were applied. The second derivative of

the relative reflectance showed the greatest differences
among the treatments. The 500e600 nm spectral range was

selected to demonstrate these differences in Fig. 9. An

increasing local amplitude fluctuation can be observed in the

second derivative of the leaf reflectance as higher saline

treatments were applied. Therefore, throughout the chemo-

metric data analysis, the SavitzkyeGolay (Savitzky & Golay,

1964) second derivative (window size: 7, polynomial order: 2)

of the relative reflectance was applied for the full spectral

range.

A combined PLS-R model was established, predicting Naþ

and Cl� content simultaneously based on the hyperspectral

signature in the range of 400e1800 nm. The Naþ calibration

model resulted within RMSEC of 0.48 mg g�1, RMSECV of

0.69 mg g�1 along with R2 Cal and CV 0.82 and 0.63, respec-

tively, while the Cl� calibration model resulted within RMSEC

https://doi.org/10.1016/j.biosystemseng.2022.02.018
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Fig. 7 e Trends of sodium content change with the

increasing chloride concentration in the upper and basal

leaves (n ¼ 73) on 27 DAT. Liner line: y ¼ 0.2785x - 1.2418,

R2 (determination coefficient) ¼ 0.84 and exponential line:

y ¼ 0.0844e0.1273x, R2 ¼ 0.70.
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of 2.1 mg g�1, RMSECV of 2.9 mg g�1 along with R2 Cal and CV

0.75 and 0.52, respectively. The prediction model using four

latent variables (LV) resulted within RMSEP of 0.47 mg g�1 and

2.8 mg g�1 for Naþ and Cl�, respectively along with R2 (Pred) of

0.79 and 0.75 for Naþ and Cl�, respectively. These results are

depicted in Fig. 10a and Fig. 10b for the youngest fully mature

leaves on 27 DAT for Naþ and Cl�, respectively. Additionally,
an efficient prediction model was established for K:Na ratio

prediction within RMSEP 12.7, which is the 10% error of the

measured K:Na ratio range (Fig. 10c). The K:Na regression
Fig. 8 e Averaged relative reflectance of all measurement days

signature for 400e2500 nm for the youngest fully mature leaves

experiment, g: second experiment) leaves along with a focus on

fully mature leaves (b: first experiment, f: second experiment),
model built with 4 LVs resulted within RMSEC of 9.4, RMSECV

of 18.9 along with R2 Cal and CV 0.89 and 0.58, respectively

while R2 Pred was 0.83. The variable importance in projection

(VIP) was derived from the PLS-R analysis and was used for

obtaining the significant wavebands related to the ion (Cl�,
Naþ) contents (Fig. 11 a, b) and the K:Na ratio (Fig. 11 c). The

most sensitive wavelength ranges for Cl� were 500e531,

682e752, 1310e1407, and 1763e1768 nm, while for Naþ, they
were mainly the 500e531 and 682e752 nm wavebands. Addi-

tionally, the 986 and 1766 nm bands appeared in the ion

content prediction models. In case of K:Na, the 500e533,

561e585, 682e752, and 986 nm wavebands significantly

contributed to the regression models.

For the evaluation of leaf age and environmental condi-

tions independent of internal component measurements, a

PLS-R prediction model, combining the youngest fully mature

leaves and basal leaves for Cl� throughout three measure-

ment campaigns, was established. It resulted in 6 LVs, RMSEC

5.1 mg g�1, RMSECV 8.4 mg g�1, RMSEP 6.9 mg g�1, R2 (Cal,

CV) ¼ 0.84, 0.58, and R2 (Pred) ¼ 0.69 (Fig. 12).

The robustness of the established regression model was

studied by applying it to relative reflectance datasets that

were collected in the second salt stress experiment. The per-

formance of the PLS-R prediction model (Fig. 13), for Cl� con-

tent detection, yielded 4 LVs, RMSEC 4.2 mg g�1, RMSECV

6.1 mg g�1, RMSEP 7.5 mg g�1, R2 (Cal, CV) ¼ 0.84, 0.67, and R2

(Pred) ¼ 0.69.

The PLS-DA classificationwas applied to detect plant saline

stress and to create a detection support classification model.

The classification model performance is presented in Fig. 14.

The PLS-DA model was able to correctly predict 71% of the
for the control, EC 3, EC 6, and EC 9 treatments. Spectral

(a: first experiment, e: second experiment) and basal (c: first

areas withmajor differences between treatments (youngest

basal leaves (d: first experiment, h: second experiment).
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Fig. 9 e Plot of pre-processed (SavitzkyeGolay second

derivative with window size: 7 and polynomial order: 2)

relative reflectance spectrum for the control, EC 3, EC 6, and

EC 9 treatments in the range of 500e600 nm for the

youngest fully mature leaves (a) and the basal leaves (b) on

June 4, 2018.
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non-stressed (sensitivity) and 94% of the stressed samples

(specificity) using 7 LVs. The calibration and cross-validation

results of the classification model were as follows: Sensi-

tivity (Cal) ¼ 1, Specificity (Cal) ¼ 0.99, Sensitivity (CV) ¼ 0.73,

and Specificity (CV) ¼ 0.86.
4. Discussion

The results presented in this work demonstrated how salt

stress in grafted tomato plants can be monitored: (1) in a non-

destructive manner by using hyperspectral measures; (2)
Fig. 10 e Scatter plots of the combined PLS-R regression model

K:Na ratio (c) versus the laboratory measurements. Cl¡ and Naþ

DAT and for the K:Na ratio (n¼ 73) on 27 and 34 DAT. The Cl¡ an

spectra in the spectral range of 400e1800 nm and for the K:Na
disregarded according to leaf age and location; and (3) inde-

pendently from environmental changes.

4.1. Physiological performance and internal content

The physiological performance of tomato leaves throughout

the experiment showed a decreasing trend as a function of the

salt stress introduced to the plants. The gs demonstrated an

oscillating rhythm that was affected by meteorological fac-

tors, such as VPDair, temperature, and humidity. These results

are in line with the findings of (Maroco et al., 1997; Hernandez

et al., 2016) in Eucalyptus globulus. Under mild salt treatments

(i.e., control and EC 3), a decreasing trend of gs difference of

the youngest fully mature leaves and basal leaves might have

been due to the excessive Naþ and Cl� ion concentrations in

the leaves of plants that were under salinity treatments,

causing decreasedwater content and, thus, resulting in earlier

stomatal closure (Munns, 2005). The photosynthetic rate (PN)

showed a similar decreasing trend to gs except that on several

measurement dates, EC 3-treated plants demonstrated PN that

was equal to or higher than the control treatment. These re-

sults suggest that low salt concentrations, with EC such as

3 dS m�1, may not cause noticeable physiological differences

(Cuartero & Fern�andez-Mu~noz, 1998). The temporally

increasing PN ratio of the youngest fully mature leaves and

basal leaves revealed that the salt accumulation in the bottom

leaves affected their photosynthetic ability (Munns, 2002;

Tavakkoli et al., 2011; Di Gioia et al., 2013). Although the

transpiration rate (E) was very similar in its trends to gs, on 37

DAT, E showed a high rate of activity while stomatal

conductance decreased. This behaviour can be explained by

the climatic conditions of that particular day, when the

maximum temperature reached 41.2 �C, along with a very low

relative humidity, dropping to ~16% (Fig. 1). Under these

conditions, the evaporative environmental demand is very

high, leading to a high transpiration rate, but the plant re-

duces the gs by closing the stomata (Munns, 2005). Similar

trends were found in rice (Singh & Sasahara, 1981), African
results of predicted Cl¡ (a) and Naþ (b) contents and for the

shown for the youngest fully mature leaves (n ¼ 40) on 27

d Naþ model is based on the pre-treated relative reflectance

ratio at 500e1100 nm.
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Fig. 11 e Variable importance in projection in the function of wavelengths for the PLS-R prediction models of Cl- (a), Naþ (b),

and K:Na (c).

Fig. 12 e Scatter plot of PLS-R regression model results of

predicted Cl¡ content versus the laboratory measurements

for both upper and lower leaves throughout three

measurement campaigns (n ¼ 134). The model is based on

the pre-treated relative reflectance spectra in the spectral

range of 400e1800 nm.

Fig. 13 e Application of the established PLS-R, Cl¡

prediction model to the reflectance data of the second

experiment for the youngest fully mature leaves (n ¼ 73).

The model is based on the pre-treated relative reflectance

spectra in the spectral range of 400e1800 nm.
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grasses (Maroco et al., 1997), and Armenian plums (Schulze

et al., 1975). Though these environmental conditions are

extreme, still, significant differences in the transpiration rate

were obtained between treatments, indicating the effect of the

salt accumulation on the plants' ability to physiologically

function under stress. The general increase in PhiPS2, for all

treatments until 48 DAT, except for the EC 9 treatment, which

did not show any significant change after 13 DAT, suggests

that the excessive amounts of NaCl caused almost immediate

damage to the photosystem II complex, decreasing its

photosynthetic activity (Mehta et al., 2010). The differences

between the behaviours of the upper and lower leaves suggest
that salt accumulation may significantly influence the func-

tioning of photosystem II. A decrease in Ci was shown in the

literature to be a typical physiological response of plants

under salt stress (Downton et al., 1985) and in a linear relation

with internal leaf Cl� (Seemann & Critchley, 1985), which can

explain the gradual decrease in Ci. The growing internal

composition in aged leaves demonstrated that cellular com-

partmentalisation of salts predominantly occurred in the

older leaves, reaching a chloride concentration of

50e70 mg g�1. Photosystem II activity measurements

demonstrated that the youngest fully mature leaves per-

formed better than old leaves under all treatments, a

https://doi.org/10.1016/j.biosystemseng.2022.02.018
https://doi.org/10.1016/j.biosystemseng.2022.02.018


Fig. 14 e Scatter plot of PLS-DA classification model results

of predicted class membership for both upper and lower

leaves throughout four measurement campaigns (n ¼ 197).

The model is based on the pre-treated (D2R) relative

reflectance spectra in the spectral range of 400e1800 nm.
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behaviour that may explain the plant's systematic storing of

salts in bottom leaves as a defence mechanism to cope with

salt stress (Niu et al., 1995). The decreasing ratio of Kþ to Naþ

between treatments in the young leaves, in comparison toNaþ

concentration, indicates that the high quantity of salt in the

system not only affected the physiological performance of the

plant but also reduced Kþ uptake (Cuartero et al., 1992; P�erez-

Alfocea et al., 1996). The presented physiological and

biochemical results suggest that the magnitude in which

physiological variables perform have a great dependence on

environmental variables and are not solely salt-treatment-

related.

4.2. Spectral signature

Relative reflectance obtained from tomato leaves manifested

changes as a function of increasing salt concentrations. The

youngest fully mature leaves demonstrated spectral changes

on different wavelengths compared to the basal leaves. Leaf

reflectance tendencies in the NIR region, due to increases in

soil salinity, are not uniform in the literature. Previous works

in eggplant and barley showed a decrease (Pe~nuelas et al.,

1997; Leone et al., 2007), while melon plants demonstrated

an increase in NIR reflectance as a function of salinity

(Hern�andez et al., 2014). Similarly, Zhang et al. (2011) detec-

ted a rise in NIR reflectance for salt-tolerant species growing

in moderately saline soils. The results presented by Zhang

et al. (2011) and Hern�andez et al. (2014) are consistent with

the findings of this work. In general, higher NIR reflectance is

associated with normal plant development (Jensen, 1983).

The broad trend of NIR reflectance reduction appeared
suitable for describing the salt stress effects on non-tolerant

plant species but was not satisfactory for salt-tolerant plants

growing in moderately saline soils (L€auchli & Lüttge, 2002;

Zhang et al., 2011). As suggested in the literature, tomato,

being salt-tolerant in comparison with other agricultural

crops, has also been shown to act as salt-tolerant in a spec-

tral manner.

4.3. Machine learning

PLS-R models related the spectral information to the internal

composition of leaves under salinity treatments. As dis-

cussed above, it is important to monitor Naþ and Cl� due to

their different trends concerning ion accumulation in leaves

and the potassium and sodium ratio as it influences physi-

ological performance and Kþ uptake. The hyperspectral

measurement-based PLS-R model for predicting Naþ and Cl�

content in upper leaves showed the ability of spectroscopy

for salinity stress detection in a non-destructive manner.

Along with Cl� accumulation, the K:Na ratio was found to be

a useful measure for salinity stress in plants (Tavakkoli et al.,

2011). The established K:Na ratio prediction model enabled

the non-destructive spectral monitoring of Naþ toxicity and

competition for the Kþ binding site. The important wave-

bands in the Cl�, Naþ and K:Na prediction models were in

line with the findings of El-Hendawy et al. (2019) for wheat

irrigated with saline water. Moreover, the 986-nm band was

found to significantly contribute to these prediction models,

suggesting the role played by starch content differences in

the increasing ion contents. The change in starch content is

related to photo-assimilated carbon storage, which, accord-

ing to the literature, is influenced by plant abiotic stress

(Thalmann & Santelia, 2017). Generally, in vegetation stress

measurements, the youngest fully mature leaf is investi-

gated. Defining “youngest fully mature leaf” is a subjective

matter and depends on the proficiency of the sampler. The

spectral signature is influenced by the structure of the leaf,

which, among other factors, is age-related. This phenome-

non leads to greater diversity in the spectral signatures.

Taking into consideration that the chemometric models are

applied to a great diversity of leaves, a prediction model

should preferably be leaf-age-independent. Moreover, the

plant physiological state that was discussed above is greatly

dependent on environmental conditions, together with the

consequences of salt stress. Due to the environmental con-

dition diversity, the temporal stress trend analysis, based on

physiological variables, was not feasible. Therefore, it is

essential to examine the ability of spectral measurements,

particularly regarding whether they are independent of daily

environmental changes when analysing plant stress caused

by ion accumulation in the leaves. The PLS-R model that

predicted Cl� content, including the reflectance of leaves of

various ages from different measurement regimes under

environmental and temporal influences, resulted within a

RMSEP of 6.9 mg g�1. The robustness of the established

regression model and its applicability was evaluated by

testing it on an independent dataset, resulting within a

RMSEP of 7.5 mg g�1. Although the prediction error was

slightly higher than that of the previous models, it should be

noted that the model was applied to a different tomato
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cultivar. This suggests that in order to improve the prediction

ability of the original model, it should be trained with addi-

tional tomato cultivars. The results demonstrate an ability to

establish a robust prediction model for plant stress detection

in diverse environmental conditions. These achievements

advance the approach of Leone et al. (2007), for which plant

spectral signature was related to soil salinity, as well as the

work of Goldshleger et al. (2013), which linked plant Naþ and

Cl� contents to saline soil spectral signatures.

PLS-R prediction models were established in order to

quantify the amount of accumulated salt ions in the leaves,

indicating the level of plant stress. For practical application, it

is more important to determine whether a plant suffers from

salt stress than the accumulated amount of salt in the leaves.

The PLS-DA classification, based on hyperspectral measure-

ments, showed great ability to efficiently distinguish the non-

stressed from the saline-stressed tomato plants with high

specificity and sensitivity.
5. Conclusion

Salt treatments were found to affect the physiological per-

formance of plants, although environmental conditions had a

greater influence on plant temporal physiological trends.

Spectral data acquisition with machine learning showed high

ability to predict salt accumulation in plants. Moreover, a

hyperspectral, robust decision-supporting classification

model was established for detecting plants under salt stress.

The presented capabilities of predicting Cl�, Naþ, and the K:Na

ratio in a non-destructive manner, by utilizing spectroscopy,

could serve as the basis for developing a low-cost, fast, and

efficient stress detection method, independent of environ-

mental conditions.

Further research is required to improve the prediction

model accuracy by extending the dataset with additional

cultivars and in more diverse environmental conditions.

Furthermore, regarding the practical application, a reduced

variable model for multispectral imaging could be developed

in order to enable salt stress monitoring in a commercial

manner.
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